Michael Cebulla (Ed.)

Object-Oriented
Technology

ECOOP 2007 Workshop Reader

ECOOP 2007 Workshops
Berlin, Germany, July 2007
Final Reports

LNCS 4906

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4906

Michael Cebulla (Ed.)

Object-Oriented
Technology

ECOQOP 2007 Workshop Reader

ECOOP 2007 Workshops
Berlin, Germany, July 30-31, 2007
Final Reports

@ Springer

Volume Editor

Michael Cebulla

Technische Universitit Berlin

Fakultit IV - Elektrotechnik und Informatik
Franklinstr. 28/29, 10587 Berlin, Germany
E-mail: mce @cs.tu-berlin.de

Library of Congress Control Number: 2008920684

CR Subject Classification (1998): D.1, D.2, D.3, F.3, C.2, K4,J.1
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-78194-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78194-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12228454 06/3180 543210

Preface

This volume contains the reports from the workshops held at the 21st European
Conference on Object-Oriented Programming — ECOOP 2007 — at Technische
Universitat Berlin. Nineteen workshops were held in the course of this conference
on July 30 and July 31, 2007, covering a large spectrum of hot research topics. As
in previous editions of ECOOP, numerous scientists from academia and industry
took the chance to present innovative and topical ideas in an environment offering
optimal conditions for exciting discussions and fruitful interactions.

The Workshop Reader which contains the reports from the workshops has
been a substantial part of the ECOOP conference for more than 10 years. During
the pre-conference phase the workshop organizers are invited to author a report
about their workshops where they have the opportunity to describe the state of
the art, the discussions and the trends in the fields of their workshop. In addition
some of the organizational aspects may be discussed.

This volume collects 19 reports from high-quality workshops whose topics
were related to selected aspects in the field of object-oriented programming and
technology. Following the example of previous workshop readers we introduced
some notions in order to establish thematic clusters. These notions are (1) Pro-
gramming Languages, (2) Aspects, (3) Formal Techniques, Roles, Components,
(4) Software Engineering, and (5) Applications.

Three months after the conference we are now able to present the reports
which describe the state of the art, the discussions and the relevant trends in
the research fields addressed by the workshops. In sum, each of these reports
thus contributes to a panoptic overview of the current tendencies in the lively
field of object-oriented programming and technology. Readers from academia
and industry who want to be informed about the current developments in this
research area thus can highly profit from this volume.

This Workshop Reader of ECOOP 2007 is the result of the cooperation of a
large group of people, which includes the workshop organizers, the co-authors
of the reports and the participants who contributed to the workshops with their
presentations and statements. Further, I wish to thank the Workshop Chairs
Peter Pepper and Arnd Poetzsch-Heffter and the members of the Workshop
Selection Committee. I am also indebted to Doris Fahndrich for her support.

November 2007 Michael Cebulla

Organization

Workshop Selection Committee

Peter Pepper (Co-chair) Technische Universitidt Berlin, Germany
Arnd Poetzsch-Heffter

(Co-chair) Technische Universitat Kaiserslautern,

Germany

Uwe Afimann Technische Universitit Dresden, Germany
Lodewijk Bergmans University of Twente, Netherlands
Nick Mitchell IBM T.J. Watson Research Center, USA
Mario Studholt Ecole des Mines, Nantes/INRIA, France
Jan Vitek Purdue University, USA

Sponsoring Institutions

Organization
O 1/

In cooperation with

NN 5 G- A

Supported by

« « M Deutsche Telckom w
Laboratories
Andnstitut der Technischen Universitat Berlin 4
Microsoft’))
Research [dusi: arti: |

ST IN 5
o 204

sd&m

A Company of @i Capgemini

n-50,
LY
Ysis-s108

S

&
o
SITas AR

Table of Contents

Programming Languages

LS e e
Christophe Rhodes, Pascal Costanza, Theo D’Hondlt,
Arthur Lemmens, and Hans Hubner

Dynamic Languages and Applications
Alexandre Bergel, Wolfgang De Meuter, Stéphane Ducasse,
Oscar Nierstrasz, and Roel Wuyts

Multiparadigm Programming in Object-Oriented Languages: Current
Researcho o
Kei Davis and Jorg Striegnitz

Equation-Based Object-Oriented Languages and Tools................
Peter Fritzson, David Broman, Francgois Cellier, and
Christoph Nytsch-Geusen

Aliasing, Confinement, and Ownership in Object-Oriented
Programming.
Dave Clarke, Sophia Drossopoulou, James Noble, and
Tobias Wrigstad

Implementation, Compilation, Optimization of Object-Oriented

Languages, Programs and Systems
Olivier Zendra, Eric Jul, Roland Ducournau, Etienne Gagnon,
Richard Jones, Chandra Krintz, Philippe Mulet, and Jan Vitek

Aspects

Models and Aspects - Handling Crosscutting Concerns in MDSD
Andrew Jackson, Iris Groher, Christa Schwanninger, and
Markus Volter

Aspects, Dependencies and Interactions.............................
Frans Sanen, Ruzanna Chitchyan, Lodewijk Bergmans, Johan Fabry,
Mario Sudholt, and Katharina Mehner

Enabling Software Evolution Via AOP and Reflection
Manuel Oriol, Walter Cazzola, Shigeru Chiba, Gunter Saake,
Yvonne Coady, Stéphane Ducasse, and Giinter Kniesel

13

27

40

50

65

(0]

91

VIII Table of Contents

Formal Techniques, Roles, Components

Formal Techniques for Java-Like Programs
John Boyland, Dave Clarke, Gary Leavens, Francesco Logozzo, and
Arnd Poetzsch-He ter

Roles and Relationships in Object-Oriented Programming, Multiagent
Systems and Ontologies........ i
Guido Boella and Friedrich Steimann

Component-Oriented Programming.............,
Wolfgang Weck, Ralf Reussner, and Clemens Szyperski

Software Engineering

Model-Driven Software Adaptation.................
Nelly Bencomo, Gordon Blair, and Robert France

Object-Oriented Reengineeringcouiininnianann..
Serge Demeyer, Yann-Gagl Guéhéneuc, Anne Keller,
Christian F.J. Lange, Kim Mens, Adrian Kuhn, and
Martin Kuhlemann

Practical Approaches for Software Adaptation
Carlos Canal, Juan Manuel Murillo, and Pascal Poizat

Quantitative Approaches in Object-Oriented Software Engineering
Yann-Gagl Guéhéneuc, Christian F.J. Lange, Houari A. Sahraoui,
Giovanni Falcone, Michele Lanza, Coral Calero, and
Fernando Brito e Abreu

Applications

Object Technology for Ambient Intelligence and Pervasive

Computing T
Jessie Dedecker, Eric Tanter, Holger Miigge,
Cristina Videira Lopes, and Pascal Cherrier

Pedagogies and Tools for the Teaching and Learning of Object Oriented
CONCEPES vttt
Jiirgen Borstler and Irit Hadar

Refactoring Tools
Danny Dig, Ralph Johnson, Frank Tip, Oege De Moor, Jan Becicka,
William G. Griswold, and Markus Keller

Author Index

Lisp

Report on the 4th European Lisp Workshop at
ECOOP 2007

Christophe Rhodes!, Pascal Costanza?, Theo D’Hondt?, Arthur Lemmens?®,
and Hans Hiibner*

1 Goldsmiths College, University of London, UK
2 Vrije Universiteit Brussel, Belgium
3 Amsterdam, Netherlands
4 Berlin, Germany

Abstract. This report covers the activities of the 4°" European Lisp
and Scheme Workshop. We introduce the motivation for a workshop
focussing on languages in the Lisp family, and mention relevant organ-
isational aspects. We summarize the presentations and discussions, in-
cluding Alexander Repenning’s keynote talk, and provide pointers to
related work and events.

1 Introduction

Lisp is one of the oldest computer languages still in use today. In the decades of
its existence, Lisp has been a fruitful basis for language design experiments as
well as the preferred implementation language for applications in diverse fields.

The structure of Lisp makes it easy to extend the language or even to imple-
ment entirely new dialects without starting from scratch. Common Lisp, with
the Common Lisp Object System (CLOS), was the first object-oriented program-
ming language to receive an ANSI standard and retains the most complete and
advanced object system of any programming language, while influencing many
other object-oriented programming languages that followed.

It is clear that Lisp is gaining momentum: there is a steadily growing in-
terest in Lisp itself, with numerous user groups in existence worldwide, and in
Lisp’s metaprogramming notions which are being transferred to other languages,
as for example in Aspect-Oriented Programming, support for Domain-Specific
Languages, and so on.

The theme of the workshop held at ECOOP 2007 was intentionally broad,
aimed at encouraging lively discussion between researchers proposing new ap-
proaches and practitioners reporting on their experience with the strengths and
limitations of current Lisp technologies, with the intent to address the near-
future evolution of Lisp-based languages and Object-Oriented techniques in re-
search, industry and education.

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 1. 2008.
© Springer-Verlag Berlin Heidelberg 2008

2 C. Rhodes et al.

2 Organisation

This section describes the organisational aspects of the workshop. The sub-
mitted papers and workshop slides can be found at the workshop’s website:
http://lisp-ecoop07.bknr.net/

2.1 Organisers

Pascal Costanza Theo D’Hondt
pc@p-cos.net tjdhondt@vub.ac.be
Arthur Lemmens Christophe Rhodes
alemmens@xs4all.nl c.rhodes@gold.ac.uk

Hans Hiibner
hans.huebner@gmail.com

2.2 Call for Participation

... please don’t assume Lisp is only useful for Animation and Graphics,
Al Bioinformatics, B2B and E-Commerce, Data Mining, EDA /Semicon-
ductor applications, Expert Systems, Finance, Intelligent Agents, Knowl-
edge Management, Mechanical CAD, Modeling and Simulation, Natural
Language, Optimization, Research, Risk Analysis, Scheduling, Telecom,
and Web Authoring just because these are the only things they happened
to list.

— Kent Pitman [I]

Potential attendees were invited to contribute a long paper (10 pages) present-
ing scientific or empirical results about Lisp- and Scheme-based uses or new
approaches for software engineering purposes; a short essay (5 pages) defending
a position about where research and practice based on Lisp should be heading
in the near future; or a proposal for a breakout group describing an agenda for
discussion.

Suggested topics for presented papers included: new language features or ab-
stractions; experience reports or case studies; protocol metaprogramming and
libraries; educational approaches; software evolution; development aids; persis-
tent systems; dynamic optimization; implementation techniques; innovative ap-
plications; hardware support for lisp systems; macro-, reflective-, meta- and/or
rule-based development approaches; and aspect-oriented, domain-oriented and
generative programming.

2.3 Format

The workshop was held on the first day of ECOOP 2007; after a welcome, Alexan-
der Repenning’s keynote talk on Antiobjects was followed by presentations of the
accepted paper contributions (described in Section Bl); the workshop continued
with a demonstration of current development in ContextL. and Context-Oriented
Programming, and concluded with an open discussion session.

http://lisp-ecoop07.bknr.net/

Lisp 3
3 Presentations

There were five accepted papers for presentation at the workshop, along with
the invited keynote talk from Alexander Repenning and the demonstration of
ContextL by Pascal Costanza and Robert Hirschfeld.

Antiobjects: Mapping Game AI to Massively Parallel Architectures
using Collaborative Diffusion
Alexander Repenning, University of Colorado

Modern game consoles offer enormous computational power at very low
cost but are difficult to program in a way to make full use of their paral-
lel architectures. The notion of antiobjects is a computational metaphor
useful to conceptualize and solve hard problems by swapping computa-
tional foreground and background. Similar to optical illusions based on
potential confusion of background versus foreground perceptions, antiob-
jects are the inverse of what we perceive to be the computational objects.

If we implement, as part of a Pacman game, a ghost, we are tempted to
think of the necessary behavior associated with the ghost object; if we
simulate the behavior of an air bubble in a water glass we are tempted
to think of how the bubble object should behave; if we build a soccer
simulation we are tempted to think of how the soccer player objects
should interact with the ball and other player objects. Antiobjects turn
traditional object oriented thinking on its head. In the case of Pacman
we put the main computation into the maze; to simulate the behavior of
an air bubble we put the main computation into the water; to create a
collaborative soccer game we put the main computation into the soccer
field.

Putting computation into antiobjects, e.g. the maze, the water, and the
soccer field, can substantially simplify hard problems in Artificial Intel-
ligence and simulations. Moreover, the mapping of computation from a
small number of objects to a much larger number of typically homoge-
nous antiobjects can by employed to parallelize computation in ways
that it can be executed on parallel architectures such as GPUs and multi-
core CPUs with very little overhead. A number of games implemented
in AgentCubes which, in turn, is implemented in Lisp, will be presented.

Are functional languages a good way to represent productive
meta-models?
Sebastién Mosser, CNRS, I3S Lab, Université Nice

Following Model Driven Development guidelines, developers will define
meta-models, models and then implement transformations between mod-
els. Existing tools based on models require highly specific skills and
knowledge from developers, and use Domain Specific Language (DSL) as

4

C. Rhodes et al.

the entry point for final users. Is it possible to describe DSL-based meta-
models using functional programming concepts and languages? Can we
do fast Model Driven Development using such techniques?

Dynamic data models: an application of M OP-based persistence in
Common Lisp

Pierre Thierry, Thierry Technologies

Simon E.B. Thierry, LSIIT, Strasbourg, France

The data model of an application, the nature and format of data stored
across executions, is typically a very rigid part of its early specification,
even when prototyping, and changing it after code that relies on it was
written can prove quite expensive and error-prone. Code and data in a
running Lisp image can be dynamically modified. A MOP-based persis-
tence library can bring this dynamicity to the data model. This enables
to extend the easy prototyping way of development to the storage of
data and helps avoiding interruptions of service. This article presents
the conditions to do this portably and transparently.

CLOS discriminating functions and user-defined specializers
Christophe Rhodes, Goldsmiths College

We discuss the interrelationships of ANSI-standardized Common Lisp,
the de facto standard AMOP, and the possibility for users to extend
the mop:specializer metaobject class. We provide two simple examples,
a specializer on a disjunction of classes and a simple pattern-matching
specializer, noting the extent to which they can be accomodated with
the standard mechanisms, detailing the work done to support that in a
contemporary implementation of the CLOS MOP [2] in Steel Bank Com-
mon Lisp [3], and discussing the open problems and scope for resolving
them.

Specialization Oriented Programming
Jim Newton, Cadence Design Systems

This paper presents an implementation of a generalization of OOP called
SOP (Specialization Oriented Programming). Numerous examples are
provided of how the system is used both at the meta programming level
as well as the application level. The SOP system presented here imple-
mented in Skill, a lisp interpreter product of Cadence Design Systems.
The design of the infrastructure is understandable to those familiar with
Common Lisp and CLOS (Common Lisp Object System), and have a
high level understanding of the CLOS MOP (metaobject protocol [2]).
Although the system’s main applications are in Electronic Design Au-
tomation (EDA), no understanding of EDA is necessary to understand
the concepts presented here.

Lisp

Thread and Interrupt Safe Method Dispatch in PCL
Nikodemus Siivola, Steel Bank Studio Ltd

Efficient Method Dispatch in PCL [] describes some of the strategies
used in the original Portable Common Loops implementation of Common
Lisp Object System and MOP. We informally discuss the modifications
done in the Steel Bank Common Lisp version of PCL [5] to provide
thread and interrupt safe method dispatch.

Recent Developments in ContextL and Context-oriented
Programming

Pascal Costanza, Vrije Universiteit Brussel, Belgium

Robert Hirschfeld, HPI, Univeritit Potsdam, Germany

There is an increased need for context-aware applications that can dy-
namically adjust their behavior to the context of their use. Two years
ago, we introduced ContextL, our first programming language extension
that explicitly supports Context-oriented Programming (COP). In COP,
programs consist of partial class and method definitions that can be se-
lected and combined at runtime as needed. Employing runtime adapta-
tions to class and method definitions, COP does not only allow expressing
context-aware behavior, but encourages continually adjusting behavior
of programs according to their context.

With contemporary mainstream programming languages, the only way
to introduce context-dependent behavior into a program is either by in-
serting if statements wherever necessary, violating one of the fundamen-
tal principles of object-oriented programming, namely to avoid explicit
conditionals for achieving polymorphic behavior, or else by using design
patterns to factor out the context-dependent behavior. Both approaches
lead to unnecessarily complicated code that is hard to comprehend and
even harder to maintain.

With COP on the other hand, we can modularize behavioral variations of
a software system into layers. Layers are composed into or out of the sys-
tem depending on the context apparent during program execution. We
extend this idea by the notion of dynamically scoped layer activation,
resulting in a viable approach to the expression of context-dependent
behavior.

Since then, we have carried out a number of successful application and
language extension experiments which show that the basic building
blocks (layers and scoped activation) remain stable cornerstones in
context-aware systems. Among others, we have implemented multiple
context-dependent views on the same object, coordination of screen up-
dates, discerning of phone calls based on the context of both callers and
callees, and selecting context-dependent billing schemes. ContextL: has

6 C. Rhodes et al.

also already been integrated into Lisp on Lines, a Web framework that
is used in commercial applications. In other settings, we have developed
ContextS for Smalltalk/Squeak, and context-oriented extensions of Am-
bientTalk. We have also taken first steps towards supporting the design
and the requirements engineering phases to address the specific needs of
context-aware applications.

4 Discussion

The papers by Rhodes and Newton were closely related and in many ways com-
plementary: Rhodes describes the technical infrastructure necessary for a con-
temporary Common Lisp implementation to support user-defined specialization
methods for generic functions, while Newton gave an experience report of devel-
oping and using a particular form of such specializers in a system of industrial
interest, along with a description of the protocols used. It is hoped that a joint
publication exploiting this complementarity will be forthcoming.

5 Related Events

There is an increasing scope for meetings organized around the broad theme
of Computer Science and Lisp technology. In particular, the International Lisp
Conference was held in April 2007 in Cambridge, UKEL while 2008 will see the
European Common Lisp Meeting held in Istanbul (along with a co-located sym-
posium); meanwhile, Lisp user groups continue to thrive throughout the world,
with frequent meetings of varying levels of formality.

References

1. Pitman, K.: Re: More lisp (2001),
http://interviews.slashdot.org/comments.pl?sid=23357&cid=2543265

2. Kiczales, G., des Rivieres, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge (1991)

3. Newman, W.H., et al.: SBCL User Manual (2000), http://www.sbcl.org/manual/

4. Kiczales, G., Rodriguez, L.: Efficient method dispatch in PCL. In: Proceedings of
the 1990 ACM conference on LISP and Functionl Programming (1992)

5. Siivola, N., et al.: SBCL Internals Manual (2005),
http://www.sbcl.org/sbcl-internals/

!http://www.international-1isp-conference.org/2007/

http://interviews.slashdot.org/comments.pl?sid=23357&cid=2543265
http://www.sbcl.org/manual/
http://www.sbcl.org/sbcl-internals/
http://www.international-lisp-conference.org/2007/

Dynamic Languages and Applications
Report on the Workshop Dyla’07 at ECOOP 2007

Alexandre Bergel', Wolfgang De Meuter?, Stéphane Ducasse?,

Oscar Nierstrasz*, and Roel Wuyts®

! Hasso-Plattner-Institut, Germany
Alexandre.Bergel@hpi.uni-potsdam.de

2 Vrije Universiteit Brussel, Belgium

wdmeuter@vub.ac.be
3 University of Savoie, France
stephane.ducasseQuniv-savoie.fr
4 University of Bern, Switzerland
oscar@iam.unibe.ch
5 IMEC & Université Libre de Bruxelles, Belgium
roel.wuyts@ulb.ac.be

Abstract. Following last two years” workshop on dynamic languages at
the ECOOP conference, the Dyla 2007 workshop was a successful and
popular event. As its name implies, the workshop’s focus was on dynamic
languages and their applications. Topics and discussions at the workshop
included macro expansion mechanisms, extension of the method lookup
algorithm, language interpretation, reflexivity and languages for mobile
ad hoc networks.

The main goal of this workshop was to bring together different dy-
namic language communities and favouring cross communities interac-
tion. Dyla 2007 was organised as a full day meeting, partly devoted to
presentation of submitted position papers and partly devoted to tool
demonstration. All accepted papers can be downloaded from the work-
shop’s web site.

In this report, we provide an overview of the presentations and a
summary of discussions.

1 Workshop Description and Objective

The advent of Java and C# has been a major breakthrough in the adoption
of some important object-oriented language characteristics. It turned academic
features like interfaces, garbage-collection and meta-programming into technolo-
gies generally accepted by industry. But the massive adoption of these languages
now also gives rise to a growing awareness of their limitations. On the one hand,
researchers and practitioners feel themselves wrestling with the static type sys-
tems, the overly complex abstract grammars, the simplistic concurrency pro-
visions, the very limited reflection capabilities and the absence of higher-order
language constructs such as delegation, closures and continuations. On the other

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 7412/ 2008.
© Springer-Verlag Berlin Heidelberg 2008

8 A. Bergel et al.

hand, dynamic languages like Ruby and Python are getting ever more popular.
Therefore, it is time for academia to move on and to help pushing such lan-
guages into the mainstream. On the one hand, this requires us to look back and
pick up what is out there in existing dynamic languages (such as Lisp, Scheme,
Smalltalk, Self,...) to be recovered for the future. On the other hand, it requires
us to further explore the power of future dynamic language constructs in the con-
text of new challenging fields such as aspect-orientation, pervasive computing,
mobile code, context-aware computing, etc.

The goal of this workshop is to act as a forum where we can discuss new
advances in the design, implementation and application of object-oriented lan-
guages that radically diverge from the statically typed class-based reflectionless
doctrine. The goal of the workshop is to discuss new as well as older “forgot-
ten” languages and features in this context. Topics of interest include, but are
certainly not limited to:

— agents, actors, active object, distribution, concurrency and mobility
— delegation, prototypes, mixins

— first-class closures, continuations, environments

— reflection and meta-programming

— (dynamic) aspects for dynamic languages

— higher-order objects & messages

— ... other exotic dynamic features which you would categorize as OO
— multi-paradigm & static/dynamic-marriages

— (concurrent/distributed /mobile/aspect) virtual machines

— optimisation of dynamic languages

— automated reasoning about dynamic languages

— “regular” syntactic schemes (cf. S-expressions, Smalltalk, Self)
Smalltalk, Python, Ruby, Scheme, Lisp, Self, ABCL, Prolog, ...

— ... any topic relevant in applying and/or supporting dynamic languages.

In addition to the organisers, the program committee of the workshop
included:

Johan Brichau (Universit catholique de Louvain, Belgium)

Pascal Costanza (Vrije Universiteit Brussel, Belgium)

— Erik Ernst (University of Aarhus, Denmark)

Robert Hirschfeld (Hasso-Plattner-Institut, University of Potsdam, Germany)
Matthew Flatt (University of Utah, USA)

— Dave Thomas (Bedarra Research Labs, Canada)

Laurence Tratt (King’s College London, UK)

2 Content

This section describes the organisation aspects of the workshop. The accepted
papers and workshop slides can be found on the workshop’s websitdl.

! /dy1a2007 . unibe.ch

dyla2007.unibe.ch

Dynamic Languages and Applications 9

Contrasting compile-time meta-programming in Metalua and Converge — Fabien
Fleutot and Laurence Tratt

Powerful, safe macro systems allow programs to be programatically con-
structed by the user at compile-time. Such systems have traditionally
been largely confined to LISP-like languages and their successors. In
this paper we describe and compare two modern, dynamically typed lan-
guages Converge and Metalua, which both have macro-like systems. We
show how, in different ways, they build upon traditional macro systems
to explore new ways of constructing programs.

This presentation raised several questions regarding differences with other
macro mechanism such as the one of Lisp-like languages. Also some issues re-
garding hygienic were successfully addressed by the presenter.

Relevant references related to this work are:

— The Converge programming languagcﬂ 5]
— Metaluel

Collective Behavior — Adrian Kuhn

When modelling a system, often there are properties and operations
related to a group of objects rather than to a single object only. For
example, given a person object with an income property, the average
income applies to a group of persons as a whole rather than to a single
person. In this paper we propose to extend programming languages with
the notion of collective behavior. Collective behavior associates custom
behavior with collection instances, based on the type of its elements.
However, collective behavior is modeled as part of the element’s rather
than the collection’s class. We present a proof-of-concept implementation
of collective behavior using Smalltalk, and validate the usefulness of col-
lective behavior considering a real-life case study: 20% of the case-studys
domain logic is subject to collective behavior.

The need for an accurate comparison with C++ templates was a good point
raised by the audience. This will be addressed in future work, which also cover
a formal description of the semantics.

How to not write Virtual Machines for Dynamic Languages — Carl Friedrich
Bolz and Armin Rigo

Typical modern dynamic languages have a growing number of implemen-
tations. We explore the reasons for this situation, and the limitations it
imposes on open source or academic communities that lack the resources

2 convergepl.org/

3 metalua. luaforge.net

http://convergepl.org/
metalua.luaforge.net

10

On the Interaction of Method Lookup and Scope with Inheritance and Nesting —

A. Bergel et al.

to fine-tune and maintain them all. It is sometimes proposed that im-
plementing dynamic languages on top of a standardized general-purpose
object-oriented virtual machine (like Java or .NET) would help reduce
this burden. We propose a complementary alternative to writing custom
virtual machine (VMs) by hand, validated by the PyPy project: flexi-
bly generating VMs from a high-level “specification”, inserting features
and low-level details automatically — including good just-in-time com-
pilers tuned to the dynamic language at hand. We believe this to be
ultimately a better investment of efforts than the development of more
and more advanced general-purpose object oriented VMs. In this paper
we compare these two approaches in detail.

This presentation was preceded with a very convincing demonstration. A small
interpret for a reverse polish notation calculator has been implemented. Very ag-
gressive optimisations resulted in an highly optimised generated compiler for this
calculator. Discussions were mainly about VM performance, especially when com-
pared with Hotspot. Implementing Java on top of PyPy in order to assess VM
performance was suggested. More information about PyPy is available onlindd.

Gilad Bracha

Languages that support both inheritance and nesting of declarations
define method lookup to first climb up the inheritance hierarchy and then
recurse up the lexical hierarchy. We discuss weaknesses of this approach,
present alternatives, and illustrate a preferred semantics as implemented
in Newspeak, a new language in the Smalltalk family.

Pros and cons for having explicit self and outer sends in presence of virtual
classes were presented. Several questions were raised from the large audience.
Some of them covered the need of virtual classes in presence of closure. Gilad’s

answer was that each completes the other.

The Reflectivity: Sub-Method Reflection and more — Marcus Denker

Reflection has proved to be a powerful feature to support the design of
development environments and to extend languages. However, the granu-
larity of structural reflection stops at the method level. This is a problem
since without sub-method reflection developers have to duplicate efforts,
for example to introduce transparently pluggable type-checkers or fine-
grained profilers.

This demo presents the Reflectivity, a Smalltalk system that improves
support for reflection in two ways: it provides an efficient implementa-
tion of sub-method structural reflection and a simplified and generalized
model of partial behavioral reflection. We present examples that use the
new reflective features and discuss possible future work.

4/codespeak.net/pypy/dist/pypy/doc/news.html| and pypy.org

codespeak.net/pypy/dist/pypy/doc/news.html
pypy.org

Dynamic Languages and Applications 11

A number of questions were raised concerning the memory overhead. This
appears to be largely due to the architecture of VMs, which are bytecode based.
AST compression is part of the future work.

Some work related to this presentatiorﬁ are Sub-Method Reflection [2], Unan-
ticipated Partial Behavioral Reflection [4] and Higher Abstractions for Dynamic
Analysis [3].

AmbientTalk/2: Object-oriented Event-driven Programming in Mobile Ad hoc
Networks — Elisa Gonzalez

The recent progress of wireless networks technologies and mobile hard-
ware technologies has led to the emergence of a new generation of ap-
plications. These applications are deployed on mobile devices equipped
with wireless infrastructure which collaborate spontaneously with other
devices in the environment forming mobile ad hoc networks. Distributed
programming in such setting is substantially complicated by the inter-
mittent connectivity of the devices in the network and the lack of any cen-
tralized coordination facility. Any application designed for mobile ad hoc
networks has to deal with these new hardware phenomena. Because the
effects engendered by such phenomena often pervade the entire applica-
tion, an appropriate computational model should be developed that eases
distributed programming in a mobile network by taking these phenom-
ena into account from the ground up. In the previous ECOOP edition, we
presented and demonstrated AmbientTalk, a distributed object-oriented
programming language specially designed for mobile ad hoc networks.
This demonstration showcases AmbientTalk/2, the latest incarnation of
the AmbientTalk programming language which supplants its predecessor
while preserving its fundamental characteristics. The language is still a
so-called ambient-oriented programming language which allow objects
to abstract over transient network failures. This demo will highlight the
new design choices in AmbientTalk/2 and the rationale behind them.
The most important ones are the adoption of an event-driven concur-
rency model that provides AmbientTalk/2 with finer grained distribu-
tion abstractions making it highly suitable for composing service objects
across a mobile network, and the integration of leasing techniques for
distributed memory management.

The demo is conceived as a hands-on experience in using the main
features of the language where we show and discuss the following:

— The development of an ambient application from ground up that
illustrates the simplicity and expressive power of AmbientTalk/2.

— While developing the application, participants become gradually ac-
quainted with AmbientTalk/2’s concurrency and distribution object
models as well as the dedicated language constructs to deal with par-
tial failures, service discovery and distributed memory management.

®scg.unibe.ch/Research/Reflectivity/

scg.unibe.ch/Research/Reflectivity/

12 A. Bergel et al.

— We demonstrate how ambient applications actually behave in a real-
life context by showing the execution of a small yet representative
application on several portable devices such as laptops and smart
phones.

AmbientTalk/2 is available at prog.vub.ac.be/amop with documenta-
tion and examples.

This very convincing demonstration used a personal digital assistant to com-
municate to a laptop using a wireless communication protocol. AmbientTalk [I]
proves to be more expressive than traditional programming languages, especially
about error recovery.

3 Conclusion

Most of the presentations and discussions of Dyla’07 present extensions of tradi-
tional dynamic languages. For example Metalua augments lua with an expressive
macro mechanism, Converge is a Python dialect, Newspeak a Smalltalk dialect,
and AmbientTalk a Self-like language. Comments and encouragement expressed
by the audience asserted that dynamic languages constitute a viable research
area. Efforts for experimentation and prototyping are greatly reduced in pres-
ence of a dynamic type system.

Dyla’07 lived up to its expectations, with high-quality presentations and
demonstrations. Discussion were lively and stimulating.

Acknowledgments

We wish to thank Michael Cebulla and Jan Szumiec for their precious support.
We also wish to thank all the participants.

References

1. Dedecker, J., Van Cutsem, T., Mostinckx, S., De Meuter, W., D’Hondt, T.: Ambient-
oriented programming in ambienttalk. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, Springer, Heidelberg (2006)

2. Denker, M., Ducasse, S., Lienhard, A., Marschall, P.: Sub-method reflection. Journal
of Object Technology 6(9), 231-251 (2007)

3. Denker, M., Greevy, O., Lanza, M.: Higher abstractions for dynamic analysis. In:
PCODA 2006. 2nd International Workshop on Program Comprehension through
Dynamic Analysis, pp. 32-38 (2006)

4. Rothlisberger, D., Denker, M., Tanter, E.: Unanticipated partial behavioral reflec-
tion: Adapting applications at runtime. Journal of Computer Languages, Systems
and Structures (to appear)

5. Tratt, L.: The Converge programming language. Technical Report TR-05-01, De-
partment of Computer Science, King’s College London (February 2005)

prog.vub.ac.be/amop

Multiparadigm Programming in Object-Oriented
Languages: Current Research
Report on the Workshop MPOOL’07 at ECOOP 2007

Kei Davis! and Jorg Striegnitz?

! Los Alamos National Laboratory, Los Alamos, NM 87545, USA,
kei.davis@lanl.gov
http://www.ccs3.lanl.gov/~kei.html
2 University Of Applied Sciences Regensburg
93053 Regensburg, Germany
joerg.striegnitz@informatik.fh-regensburg.de
http://homepages.fh-regensburg.de/~stj39817/people/striegnitz.html

Abstract. While OO has become ubiquitously employed for design, im-
plementation, and even conceptualization, many practitioners recognize
the concomitant need for other programming paradigms according to
problem domain. Nevertheless, the choice of a programming paradigm is
strongly influenced by the supporting programming language facilities.
In turn, choice of programming language is usually highly constrained by
practical considerations. We seek answers to the question of how to ad-
dress the need for other programming paradigms, or even domain specific
languages, in the general context of OO languages.

It is clear that this field is yet nascent: novel, disparate approaches
and techniques are still being discovered or invented, and this very nov-
elty adds a significant element of intellectual entertainment. This article
describes the cross section of research efforts reported at the workshop
on Multiparadigm Programming in Object-Oriented Languages held at
the 2007 European Conference on Object-Oriented Programming.

Keywords: Object-oriented, multiparadigm, programming.

1 Introduction

While OO has become ubiquitously employed for design, implementation, and
even conceptualization, many practitioners recognize the concomitant need for
other programming paradigms according to problem domain. We seek answers to
the question of how to address the need for other programming paradigms—or
even domain specific languages—in the general context of OO languages.

Can OO programming languages effectively support other programming
paradigms or the embedding of other languages? The answer seems to be affir-
mative, at least for some paradigms. For example, significant progress has been
made for the case of functional programming in C++. Additionally, several ef-
forts have been made to integrate support for other paradigms as a front-end for
OO languages (the Pizza language, extending Java, is a well-known example).

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 13 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://www.ccs3.lanl.gov/~kei.html
http://homepages.fh-regensburg.de/~stj39817/people/striegnitz.html

14 K. Davis and J. Striegnitz

The object-oriented paradigm is in fact well suited to implementation of,
and extension to include, other programming paradigms. Our previous years’
MPOOL workshops at ECOOP’01, ECOOP’02, OOPSLA’03, ECOOP’04, and
OOPSLA’05, and the DP-COOL workshop (Declarative Programming in the
Context of Object-Oriented Languages) at PLI’03, bore out our hypothesis that
there are many such efforts extant, including theoretical treatments, language
implementations, practical (application) implementations, even long-extant
(Budd) and new (Van Roy) textbooks on multiparadigm programming, though
these texts are not specific to the embedding of other paradigms in an OO
language.

In the past the calls for participation have generated sufficient response that a
mild deselection process was required to maintain relevance, focus, and quality.
This process was performed by the organizers who are recognized experts in the
field. At the workshop about half of the time was used for presentation, the other
half for discussion, and these discussions tend additionally to continue through
breaks and lunch time. This topic seems to attract those interested in personally
sharing and debating ideas, making the events enjoyable to organizers and the
other participants alike. This year we had presenters not just from academia,
but also government laboratories, the public sector, and private industry.

The home page for MPOOL’07, including the archive of papers and
presentations, is http://homepages.fh-regensburg.de/ mpool/mpool07/
programme.html.

2 Presentations

Here we provide synopses of the contributions.

2.1 An Overview of the Ciao Multiparadigm Language and
Program Development Environment and Its Design Philosophy
(Manuel Hermenegildo and the Ciao Development Team)

Ciao [7,5,1,3,6] is a modern, multiparadigm programming language with an ad-
vanced programming environment. Some of the fundamental aspects of the Ciao
design, such as its multiparadigm nature and its extensibility, are based on the
observation that a single set of basic, well-chosen features (a language kernel) can
effectively support several programming paradigms and styles [7,5]. This approach
is, of course, not exclusive to Ciao, but in Ciao the facilities that enable building
from a simple kernel are very explicitly available (and their use encouraged) from
the system programmer level to the application programmer level.

In fact, it is the extensibility of the kernel language that allows Ciao to be a
truly multiparadigm programming system incorporating many of the best fea-
tures of a number of programming paradigms. In particular, the system supports:

— Functional Programming: a set of packages allows defining functions, includ-
ing higher-order (function abstractions and applications), and lazy evalua-
tion (optionally). The same functional syntax can be used for both functions
and predicates.

Multiparadigm Programming in Object-Oriented Languages 15

— Logic Programming: a set of packages provides support for full ISO-Prolog.
However, using a different set of packages in a given module or class brings
in instead pure logic programming without Prolog’s impure features so that,
e.g., a declarative I/O library can be loaded on top instead of the Prolog
I/0. In addition to the usual depth-first, left-to-right execution regime of
Prolog again by loading different packages several other computation rules
are available such as breadth-first, iterative deepening, Andorra model, etc.
(and tabling is currently being added). Higher-order logic programming with
predicate abstractions is also supported.

— Constraint Programming: several constraint solvers and classes of constraints
using these solvers are supported including clpq, clpr, and finite domains.
The constraint languages and solvers are also extensible at the user level via
attributed variables and/or Constraint Handling Rules (CHR) [4,9].

— Object-Oriented Programming: object-oriented programming is provided by
the O’Ciao class and object packages [7]. These packages provide capabili-
ties for class definition, object instantiation, encapsulation and replication of
state, inheritance, interfaces, etc. These object-oriented features are also nat-
ural extensions of the underlying module system, extending its capabilities.

— Concurrency, parallelism, and distributed execution: other packages bring in
concurrent, distributed, and parallel execution capabilities [2]. A notion of
“active objects” also allows compiling objects so that they are ultimately
mapped to a standalone process, which is transparently accessed by the
rest of an application. In addition to characteristics that are specific to cer-
tain programming paradigms, many other additional features are available
through libraries such as, e.g., feature terms (records), persistence, answer
set programming, WWW programming, etc. Again, all of these can be acti-
vated or deactivated on a per-module or class basis.

In addition to characteristics that are specific to certain programming
paradigms, many other additional features are available through libraries such
as, e.g., feature terms (records), persistence, answer set programming, WWW
programming, etc.

1. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lépez-Garcia and G.
Puebla (Eds.). The Ciao System. Ref. Manual (v1.13). Technical report, C.
S. School (UPM), 2006. Available at http://www.ciaohome.org.

2. D. Cabeza and M. Hermenegildo. Distributed Concurrent Constraint Execu-
tion in the CIAO System. In Proc. of the 1995 COMPULOG-NET Workshop
on Parallelism and Implementation Technologies, Utrecht, NL, September
1995. U. Utrecht / T.U. Madrid. Available from http://www.cliplab.org/.

3. The Ciao Development Team. The Ciao Multiparadigm Language and Pro-
gram Development En vironment, November 2006. The ALP Newsletter 19(3).
The Association for Logic Programming. Available from
http://www.logicprogramming.org/newsletter /nov06 /index.html.

16 K. Davis and J. Striegnitz

4. Thom Frihwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, Special Issue on Constraint Logic Programming, 37(1-3),
October 1998.

5. M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garcia de la Banda, P.
Lépez-Garcia and G. Puebla. The CTAO Multi-Dialect Compiler and System:
An Experimentation Workbench for Future (C)LP Systems. In Parallelism
and Implementation of Logic and Constraint Logic Programming, pages 65-
85. Nova Science, Commack, NY, USA, April 1999.

6. M. Hermenegildo and The Ciao Development Team. Why Ciao? - An Over-
view of the Ciao System’s Design Philosophy. Technical Report CLIP7/
2006.0, Technical University of Madrid (UPM), School of Computer Sci-
ence, UPM, December 2006. Available from: http://cliplab.org/papers/ ciao-
philosophy-note-tr.pdf.

7. M. Hermenegildo and The CLIP Group. Some Methodological Issues in the
Design of CIAO - A Generic, Parallel, Concurrent Constraint System. In
Principles and Practice of Constraint Programming, number 874 in LNCS,
pages 123-133. Springer-Verlag, May 1994.

8. A. Pineda and F. Bueno. The O’Ciao Approach to Object Oriented Logic
Programming. In Colloquium on Implementation of Constraint and LOgic
Programming Systems (ICLP associated workshop), Copenhagen, July 2002.

9. Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Han-
dling Rules. PhD thesis, K.U.Leuven, Belgium, June 2005.

2.2 A Multiparadigmatic Study of the Object-Oriented Design
Patterns (Philippe Narbel)

The understanding of programming paradigms has not been fully established yet,
though many mainstream languages, e.g. C++, Java, ML, offer more than one
paradigm. This paper addresses this understanding problem through a program-
ming experiment: considering the classic object-oriented programming (OOP)
design patterns as described in the GoF book [1], we systematically look at
them from the viewpoint of other paradigms, in particular the generic modu-
lar and the functional paradigms. The main results of this experiment are: (1)
Many OO design pattern intents are meaningful in a more general setting than
OOP, and as such they are good candidates for exploring paradigms; (2) Many
OO design patterns have counterparts in generic modular programming, but
with different properties, in particular with respect to dynamic/static behavior
and type safety; (3) Some OOP design patterns can be implemented by using
basic functional programming, justifying the idea that functional programming
can also be seen as a simplified OOP having its place in a OO language; (4)
Some OOP design patterns seem definitely associated with the OOP paradigm,
stressing the intrinsic properties of this paradigm.

1. E. Gamma, R. Helm, R. Jonhnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1995.

Multiparadigm Programming in Object-Oriented Languages 17

2.3 Implementing Self-adaptability in Context-Aware Systems
(Boris Mejias and Jorge Vallejos)

Context-awareness is the property that defines the ability of a computing system
to dynamically adapt to its context of use [1]. Systems that feature this property
should be able to monitor their context, to reason about the changes in this
context and to perform a corresponding adaptation. Programming these three
activities can become cumbersome as they are tangled and scattered all over in
the system programs.

We propose to model context-aware systems using feedback loops [2]. A feed-
back loop is an element of system theory that has been previously proposed for
modelling self-managing systems. A context-aware system modelled as a feed-
back loop ensures that the activities of monitoring, reasoning and adapting to
the context are modularised in independent components. In this work, we take
advantage of such modularisation to explore different programming paradigms
for each component of the loop. We believe that this model can be applied to
other kind of applications where the use of different programming paradigms in
one system is a straight forward solution.

1. Group, LA, Ambient intelligence: from vision to reality (2003)
2. Van Roy, P., Self management and the future of software design. In: Formal
Aspects of Component Software (FACS’06). (2006)

2.4 Type Erasure in C++4: The Glue between Object-Oriented and
Generic Programming (Thomas Becker)

C++ is a multi-paradigm language. The two main paradigms in C++ are object-
oriented programming and generic programming. Many real-world C++ software
projects use these two paradigms side by side. This creates considerable tension
due to the fact that object-oriented programming is largely based on the judi-
cious choice of types and hierarchies, while generic programming tends to cause
an abundance of unrelated types. We show how type erasure can reconcile these
conflicting tendencies. We present iterator type erasure as a concrete example
that we have implemented and that is being used in production code at Zephyr
Associates, Inc..

2.5 Runtime Polymorphic Generic Programming-Mixing Objects
and Concepts in ConceptC++ (Mat Marcus, Jaakko Jarvi and
Sean Parent)

A long-held goal of software engineering has been the ability to treat software
libraries as reusable components that can be composed with program-specific
code to produce applications. The object-oriented programming paradigm offers
mechanisms to write libraries that are open for extension, but it tends to impose
intrusive interface requirements on the types that will be supplied to the library.
The generic programming paradigm has seen much success in C++, partly due

18 K. Davis and J. Striegnitz

to the fact that libraries remain open to extension without imposing the need
to intrusively inherit from particular abstract base classes. However, the static
polymorphism that is a staple of programming with templates and overloads in
C++, limits generic programming’s applicability in application domains where
more dynamic polymorphism is required. In this paper we present the poly <>
library, a part of Adobe System’s open source library ASL, that combines the
object-oriented and generic programming paradigms to provide non-intrusive,
transparent, value-based, runtime-polymorphism. Usage, impact on design, and
implementation techniques are discussed.

2.6 Multi-language Library Development—From Haskell Type
Classes to C++ Concepts (Marcin Zalewski, Andreas Priesnitz,
Cezar Ionescu, Nicola Botta and Sibylle Schupp)

We define a mapping from generic Haskell specifications to C++ with concepts,
a recent extension to C++, that can ultimately be automated. More specifically,
we provide a translation from Haskell multi-parameter type classes with func-
tional dependencies to ConceptC-++. Our translation consists of three major
parts: the division of Haskell class variables into ConceptC-++ concept pa-
rameters and associated types, the corresponding division of superclasses in the
context of a type class, and the linearization of Haskell ASTs to the concrete syn-
tax of ConceptC++4. We also discuss cases in which there is no single correct
translation from classes with functional dependencies to concepts. Our transla-
tion handles these cases in a reasonable way and is well-defined for the cases
most common in practice. The translation is motivated by an ongoing project
for distributed adaptive finite volume methods, in which software components
are modeled in Haskell and implemented in C++.

2.7 Towards Equal Rights for Higher-Kinded Types (Adriaan
Moors, Frank Piessens and Martin Odersky)

Abstract. Generics are a very popular feature of contemporary OO languages,
such as Java, C# or Scala. Their support for genericity is lacking, however. The
problem is that they only support abstracting over proper types, and not over
generic types. This limitation makes it impossible to, e.g., define a precise inter-
face for Iterable, a core abstraction in Scala’s collection API. We implemented
“type constructor polymorphism” in Scala 2.5, which solves this problem at the
root, thus greatly reducing the duplication of type signatures and code.

2.8 Integrating Java and Prolog Using Java 5.0 Generics and
Annotations (Maurizio Cimadamore and Mirko Viroli)

Although object-oriented languages are nowadays the mainstream for applica-
tion development, several research contexts suggest that a multi-paradigm ap-
proach is worth pursuing. In particular, a declarative, logic-based paradigm could
fruitfully add functionalities related to intelligence, adaptivity, and conciseness

Multiparadigm Programming in Object-Oriented Languages 19

in expressing algorithms. In this paper we present a framework for enhancing
interoperability between Java and Prolog, based on the tuProlog open-source
Prolog engine for Java. Smoother language-interoperability is achieved through
two stacked layers: (i) an API layer for automated mapping of Java types into
Prolog types (and vice versa) and seamless exploitation of the Generic Collec-
tions Framework; and (ii) an annotation layer, that aims at truly extending Java
programming with the ability of specifying Prolog-based declarative implemen-
tations of Java methods, relying on Java annotations.

2.9 Amalgamating the Session Types and the Object Oriented
Programming Paradigms (Sophia Drossopoulou, Mariangiola
Dezani-Ciancaglini and Mario Coppo)

We suggest an amalgamation of the session type and the object oriented paradigm
whereby sessions are amalgamated with methods; where threads consist of the
execution of session bodies on objects and communicate with each other through
asynchronously sending /receiving objects on channels; where the choice on how
to respond to a session request is based on the name of the request and the class
of the object receiving the request; where the choice on how to continue a session
is made on the basis of the class of the object sent/received; and where sessions
are not first class, but can be delegated to other sessions. We demonstrate our
ideas through a small language, STOOP, and an example. We formalize a smaller
calculus, FeatherSTOOF and give a formal definition, and prove subject reduction
and progress. The latter property is notoriously difficult and sometimes impossible
to achieve in sessions languages, however it holds in Feather®T9OF

2.10 A Static Framework for Scalable Emulation of Evaluation
Semantics (Andreas P. Priesnitz)

Abstract. The power of a programming language depends to a significant extent
on its semantics of expression evaluation. It is therefore rewarding and popular
to emulate nonexistent evaluation features by library constructs. For instance,
one can emulate the functional programming idiom of a (partially) unbound
function in an imperative language by providing special functor types. Their
instances are created anonymously and represent late bindings if used as func-
tion arguments. This approach is of limited scalability to further emulations in
this style, because each function implementation has to account for any possible
combination of such special argument types. We propose a library-based frame-
work that systematically supports the emulation of evaluation semantics without
increasing the complexity order of function implementations. C++ as implemen-
tation language allows applying these constructs statically and therefore to avoid
performance penalties at run time.

2.11 Improving Large Vector Operations with C++4 Expression
Template and ATLAS (L. Plagne and F. Hiilsemann)

Abstract. This paper describes a short and simple way of improving the perfor-
mance of vector operations (e.g. X = aY + bZ + ...) applied to large vectors.

20 K. Davis and J. Striegnitz

The principle is to take advantage of high performance vector copy operation
provided by the ATLAS library [1] used as a kernel for a C++ Expression Tem-
plate (ET) mechanism. The proposed ET implementation that involves a simple
blocking technique, leads to significant performance increase compared to exist-
ing implementations (up to 50%) and extends the ATLAS scope.

1. Whaley, R.C., Petitet, A. Minimizing development and maintenance costs in
supporting persistently optimized BLAS. Software: Practice and Experience
35(2) (February 2005) 101-121.

ATLAS web page: http://math-atlas.sourceforge.net.

2.12 Lazy Data Types in C++ Template Metaprograms (Adam
Sipos, Norbert Pataki, and Zoltan Porkolab)

C++ is a multiparadigm language. It supports among others the generative
paradigm by enabling the creation of programs executed in compile-time. This
is called template metaprogramming (TMP), and is based on the language’s
flexible generic construct, the template.

As the implementation of compile-time recursion and conditional statements
is possible, TMP is Turing-complete. Accordingly, in theory the expressive power
of TMP is equivalent to that of today’s programming languages. On the other
hand, TMP is not yet a widely used programming style, so the boundaries of its
practical applicability are yet to be determined. TMP has already been success-
fully applied in a number of important fields: expression templates (optimizing
calculations in compile-time [9]), compile-time code adaptation, implementation
of active libraries [6], and others.

Compile-time algorithms naturally require compile-time data structures. As
regular runtime data types handle objects, these TMP structures store types.
Among the most important are typelist[2], and the Boost::MPL library’s con-
tainers (list, vector, and others)[4].

Due to the similarities between TMP and functional programming (FP),
metaprogramming is indeed many times regarded as a pure functional language.
The common properties include referential transparency (metaprograms have no
side effects) and the lack of variables, loops, and assignments. In our opinion,
the similarities require a more thorough examination, as the metaprogramming
realm could benefit from the introduction and library implementation of more
functional techniques.

At the same time, it would not be the first time, for C++ to utilize functional
language-like behavior. Functional C++ (FC++) [8] is a library introducing
functional programming tools to C++, including currying, higher-order func-
tions, and lazy data types. FC++4, however, is a runtime library, and our aim is
to utilize functional programming techniques in compile-time.

One of the main reasons for our research is the introduction of compile-time
lazy data types. Note that the aforementioned typelist and Boost::MPL con-
tainers are finite structures, holding a limited number of types at the same time.

Multiparadigm Programming in Object-Oriented Languages 21

Contrarily, lazy data types are finite structures representing an infinite num-
ber of elements, e.g. all natural numbers. A common example for the usage of
lazy lists is the implementation of the Eratosthenes sieve algorithm producing
arbitrarily many primes.

In order to demonstrate the connection between TMP and FP, and the pos-
siblity of lazy data types, we have impemented a simplified version of the Clean
[5] functional language’s logic. Clean programs are represented by an expression
graph in the compiler. This graph is constantly rewritten in runtime based on
the user program code.

Our implementation relies on pattern matching using template partial spe-
cializations. For demonstration purposes we have also implemented the prime
sieve with a functional-like programming logic. In the future we intend to refine
the syntax with preprocessor macros, to reach an embededd Clean-like syntax.

1. Abrahams, D., Gurtovoy, A.: C++ template metaprogramming, Concepts,
Tools, and Techniques from Boost and Beyond. Addison-Wesley, Boston (2004)

2. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley, Boston (2001)

3. ANSI/ISO C++ Committee. Programming Languages—C++ ISO /TEC 14882:
1998(E). American National Standards Institute (1998)

4. Boost Metaprogramming library,
http://www.boost.org/libs/mpl/doc/index.html

5. Brus, T.H., et al.. CLEAN: A language for functional graph rewriting. In:
Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 364-384. Springer, Heidelberg
(1987)

6. Czarnecki, K., et al.: Generative Programmind and Active Libraries. Springer,
Heidelberg (2000)

7. Karlsson, B.: Beyond the C++ Standard Library, A Introduction to Boost.
Addison-Wesley, Boston (2005)

8. McNamara, B., Smaragdakis, Y.: Functional programming in C++4. In: Pro-
ceedings of the fifth ACM SIGPLAN International Conference on Functional
Programming, pp. 118-129 (2000)

9. Veldhuizen, T.: Expression Templates. C++ Report 7(5), 26-31 (1995)

3 Authors Index

Adédm Sipos

Faculty of Informatics
Eo6tvos Lorand University
shp@inf.elte.hu

Thomas Becker
Zephyr Associates, Inc.
mpool@thbecker.net

http://www.boost.org/libs/mpl/doc/index.html

22 K. Davis and J. Striegnitz

Nicola Botta
Potsdam Institute for Climate Impact Research
botta@pik-potsdam.de

Mario Coppo
Dipartimento di Informatica
Université di Torino

Maurizio Cimadamore

DEIS, Cesena

Université degli Studi di Bologna
maurizio.cimadamore@unibo.it

Mariangiola Dezani-Ciancaglini
Dipartimento di Informatica
Université di Torino

Sophia Drossopoulou
Department of Computing
Imperial College London

Manuel Hermenegildo

Facultad de Informética
Universidad Politécnica de Madrid
herme@fi.upm.es

F. Hiillsemann

Electricité De France R & D
Clamart France
frank.hulsemann@edf.fr

Cezar Tonescu
Potsdam Institute for Climate Impact Research
ionescu@pik-potsdam.de

Jaakko Jarvi
Texas A & M University
jarvi@cs.tamu.edu

Mat Marcus
Adobe Systems Inc.
mmarcus@adobe.com

Boris Mejés
Université catholique de Louvain
boris.mejias@Quclouvain.be

Adriaan Moors
Katholieke Universiteit Leuven
adriaan@cs.kuleuven.be

Multiparadigm Programming in Object-Oriented Languages

Philippe Narbel
LaBRI, University of Bordeaux
narbel@labri.fr

Martin Odersky
Ecole Polytechnique Federale de Lausanne
martin.odersky@epfl.ch

Sean Parent
Adobe Systems Inc.
sparent@adobe.com

Norbert Pataki

Faculty of Informatics
Eo6tvos Lorand University
patakino@elte.hu

Frank Piessens
Katholieke Universiteit Leuven
frank@cs.kuleuven.be

L. Plagne

Electricité De France R & D
Clamart France
laurent.plagne@edf.fr

Zoltan Porkolab

Faculty of Informatics
Eo6tvos Lorand University
gsd@elte.hu

Andreas Priesnitz

Dept. of Computer Science and Engineering
Chalmers University of Technology
priesnit@cs.chalmers.se

Sibylle Schupp

Chalmers University of Technology
schupp@cs.chalmers.se

Adam Sipos

Faculty of Informatics

Eo6tvos Lorand University
shp@inf.elte.hu

Jorge Vallejos
Vrije Universiteit Brussel
jvallejo@vub.ac.be

Mirko Viroli
DEIS, Cesena

23

24 K. Davis and J. Striegnitz

Université degli Studi di Bologna
mirko.viroli@unibo.it

Marcin Zalewski
Chalmers University of Technology
zalewski@Qcs.chalmers.se

4 The Organizers

Kei Davis, co-chair, Ph.D. Computing Science (Glasgow), M.Sc. Computa-
tion (Oxford), is a research scientist at Los Alamos National Laboratory, U.S.A.
He has conducted research in object-oriented and functional language technol-
ogy for natural language processing, large system design and implementation,
scripting, signal processing, parallel discrete-event simulation, and parallel/high
performance scientific computing.

Dr. Kei Davis

Advanced Computing Laboratory, CCS-1
Los Alamos National Laboratory

Los Alamos, NM 87545, USA
kei.davis@lanl.gov
http://www.c3.lanl.gov/~kei

Jorg Striegnitz, co-chair, received his Diploma and Ph.D. in Computer Sci-
ence from University of Technology at Aachen, Germany. He is now working
as a professor for theoretical computer science and programming languages at
the University Of Applied Sciences in Regensburg, Germany. His research work
includes the integration of programming languages by means of partial evalua-
tion, the application of multiparadigm programming to real world problems, the
optimization of programs, and parallel/high performance scientific computing.
He authored the FACT! and the EML C++ libraries, that allow for functional
programming style with C++.

Prof. Jorg Striegnitz

University Of Applied Sciences Regensburg

93053 Regensburg, Germany

joerg.striegnitzQinformtik.fh-regensburg.de
http://homepages.fh-regensburg.de/ stj39817/people/striegnitz.html

Timothy Budd is an Associate Professor of Computer Science at Oregon State
University. He is the author of over a dozen books dealing with programming
languages and Object-Oriented programming. His 1995 book “Multiparadigm
Programming in Leda” laid the foundations for the field of Multiparadigm Pro-
gramming. He has also presented tutorials on Multiparadigm Programming at
previous OOPSLA conferences.

Prof. Timothy Budd
School of Electrical Engineering and Computer Science

http://www.c3.lanl.gov/~kei

Multiparadigm Programming in Object-Oriented Languages 25

Oregon State University
Corvallis, OR 97331-5501, USA

Jaakko Jarvi is an assistant professor in the Department of Computer Science
at Texas A&M University. He has a Ph.D. in Computer Science from the Uni-
versity of Turku, Finland. His research interests include generic programming,
programming languages, and software construction in general. He actively par-
ticipates in the C++ standards committee and is a contributing member of the
C++ Boost community, where his previous work has included template libraries
that bring functional programming features to C++.

Dr. Jaakko Jarvi

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112, USA
Email: jarvi@cs.tamu.edu
http://faculty.cs.tamu.edu/jarvi

Zoltan Horvath OC Co-chair of ECOOP 2001, Member of AITO, Designer of
programming language concepts connecting distributed functional programming
with OO programming.

Prof. Zoltdn Horvath, PhD, habil.

Department of Programming Languages and Compilers
Faculty of Informatics

University E6tvos Lorand of Sciences, Budapest, Hungary
hz@inf.elte.hu

http://people.inf.elte.hu/hz

Herbert Kuchen received his Diploma, Ph.D.; and Habilitation in computer
science from the University of Technology at Aachen, Germany. He is now work-
ing as a professor for computer science at the University of Miinster, Germany.
He is interested in algorithmic skeletons for parallel programming and in the
integration of programming paradigms, in particular in the combination of func-
tional, logic, and object oriented programming, and he has been on many pro-
gram committees of corresponding conferences. Recently, he developed a C++
skeleton library.

Prof. Herbert Kuchen
University of Miinster
Leonardo Campus 3
48149 Miinster, Germany
kuchen@uni-muenster.de

Peter Van Roy’s research interests are in programming language design and
implementation, system building, distributed computing, human-computer
interfaces, constraint programming, and computer science education. He has

http://faculty.cs.tamu.edu/jarvi
http://people.inf.elte.hu/hz

26 K. Davis and J. Striegnitz

numerous publications at international level in all these areas. He developed
Aquarius Prolog, the first Prolog compiler to generate code competitive in per-
formance with C compilers. He is codeveloper of Wild Life, an implementation
of the logic-functional language LIFE. He is codesigner of the distribution model
of the Mozart Programming System, an advanced platform for transparent dis-
tributed programming that is robust and efficient, and is based on the multi-
paradigm language Oz. He holds one patent in graphic design and developed
the commercial Macintosh application FractaSketch based on this patent. He is
coauthor of “Concepts, Techniques, and Models of Computer Programming,” a
comprehensive textbook that uses a novel concepts-based approach to place all
major programming paradigms in a uniform framework that is both practical
and theoretically sound.

Van Roy has an M.S. and Ph.D. from the University of California, Berkeley
(1984 and 1990), and a French ”Habilitation a Diriger des Recherches” from
the Universite Paris VII Denis Diderot (1996). Since 1996 he is professor at the
Catholic University of Louvain in Louvain-la-Neuve, Belgium. He is partner or
principal investigator for numerous projects, is a member of the Mozart Consor-
tium, and leads a team of ten researchers.

Prof. Peter Van Roy

Catholic University of Louvain

Department of Computing Science and Engineering
B-1348 Louvain-la-Neuve, Belgium

pvr@info.ucl.ac.be
http://www.info.ucl.ac.be/people/cvvanroy.html

http://www.info.ucl.ac.be/people/cvvanroy.html

Equation-Based Object-Oriented Languages and Tools
Report on the Workshop EOOLT 2007 at ECOOP 2007

Peter Fritzson', David Bromanl, Francois Cellierz,
and Christoph Nytsch-Geusen’

! Linkdping University, Sweden
{davbr,petfr}@ida.liu.se
2ETH Zurich, Switzerland
fcellier@inf.ethz.ch
3 Fraunhofer FIRST, Germany
christoph.nytsch@first.fraunhofer.de

Abstract. EOOLT 2007 was the first edition of the ECOOP-EOOLT workshop.
The workshop is intended to bring researchers associated with different equa-
tion-based object-oriented (EOO) modeling languages and different application
areas making use of such languages together. The aim of the workshop is to ex-
plore common grounds and derive software design principles that may make fu-
ture EOO modeling languages more robust, more versatile, and more widely
accepted among the various stakeholders. At EOOLT 2007, nineteen research-
ers with diverse backgrounds and needs came together to present and discuss
fourteen different concept papers grouped into the four topic areas of integrated
system modeling approaches; hybrid modeling and variable structure systems;
modeling languages, specification, and language comparison; and tools and
methods.

1 Objectives and Call for Papers

Computer aided modeling and simulation of complex systems, using components
from multiple application domains, such as electrical, mechanical, hydraulic, control,
etc., have in recent years witnessed a significant growth of interest. In the last decade,
novel equation-based object-oriented (EOO) modeling languages, (e.g., Modelica,
gPROMS, and VHDL-AMS) based on acausal modeling using equations have ap-
peared. Using such languages, it has become possible to model complex systems cov-
ering multiple application domains at a high level of abstraction through reusable
model components.

The interest in EOO languages and tools is rapidly growing in the industry because
of their increasing importance in modeling, simulation, and specification of complex
systems. There exist several different EOO language communities today that grew out
of different application areas (multi-body system dynamics, electronic circuit simula-
tion, chemical process engineering). The members of these disparate communities
rarely talk to each other in spite of the similarities of their modeling and simulation
needs.

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 27 2008.
© Springer-Verlag Berlin Heidelberg 2008

28 P. Fritzson et al.

The workshop is concerned with, but not limited to, the following themes:

Acausality and its role in model reusability.

Component systems for EOO languages.

Database lookup and knowledge invocation.

Discrete-event and hybrid modeling using EOO languages.
Embedded systems.

EOO language constructs in support of simulation, optimization, diagnostics, and
system identification.

EOO mathematical modeling vs. UML modeling.
Equation-based languages supporting DAEs and/or PDEs.
Formal semantics of EOO related languages.

Multi-resolution / multi-scale modeling using EOO languages.
Numerical coupling of EOO simulators and other simulation tools.
Parallel execution of EOO models.

Performance issues.

Programming / modeling environments.

Real-time simulation using EOO languages.

Reflection and meta-programming.

Reuse of models in EOO languages.

Table lookup and interpolation.

Type systems and early static checking.

Verification.

The EOOLT workshop series aims at bringing these different communities together to
discuss their common needs and goals as well as the algorithms and tools that best
support them.

The workshop is intended to become recurrent since this is an important and grow-
ing area of research and technology development.

The EOOLT Workshop addresses the current state of the art of EOO modeling lan-
guages as well as open issues that currently still limit the expression power and use-
fulness of such languages through a set of full-length presentations, short position
papers, and forum discussions.

Papers and contributions are welcome that offer presentations and discussions of
existing languages and tools, their capabilities and limitations; reports on practical
experience; demonstrations of languages, tools, ideas, and concepts; positions related
to relevant questions; and discussion topics.

Despite the short deadlines and the fact that this is a new not very established
workshop series, there was a good response to the call-for-papers. Thirteen papers and
one presentation were accepted to the workshop program. All papers were subject to
reviews by the program committee.

The workshop program started with a welcome and introduction to the area of
equation-based object-oriented languages, followed by paper presentations and dis-
cussion sessions after presentations of each set of related papers. EOOLT2007 was
hosted by the Technical University of Berlin, in conjunction with the ECOOP2007
conference.

Equation-Based Object-Oriented Languages and Tools 29

2 Organizers

Peter A. Fritzson received his M.Sc. in engineering 1975 and Ph.D. in computer
science 1984, both from Linkoping University. He is Professor and Director of the
Programming Environment Laboratory (Pelab), at the Department of Computer and
Information Science, Linkoping University, Sweden. Peter Fritzson is vice chairman
of the Modelica Association, an organization he helped to establish, and during 1999-
2007 served as chairman of the Scandinavian Simulation Society, and secretary of the
European simulation organization, EuroSim. His main area of interest is software en-
gineering, especially languages, programming and debugging tools and environments;
during recent years with special emphasis on modeling and simulation, and is cur-
rently leading the OpenModelica modeling and simulation open source tool effort.
Professor Fritzson has authored or co-authored more than 180 technical publications,
including 13 books/proceedings. In 1994 he published a textbook “Principles of Ob-
ject-Oriented Modeling and Simulation with Modelica”, 939 pages, Wiley-IEEE
Press. He has served as chair of a number of international conferences and workskops,
and took the initiative to start the AADEBUG and EOOLT workshop series.

Prof. Dr.-Ing. Peter Fritzson

Programming Environment Laboratory (PELAB)
Link6ping University

SE-581 83 Linkoping

Sweden

Phone: +46(13)281484

Fax: +46(13)285899

Mobile: +46(708)281484

Email: petfr@ida.liu.se

URL: http://www.ida.liu.se/labs/pelab/

Francois E. Cellier received his BS degree in electrical engineering in 1972, his MS
degree in automatic control in 1973, and his PhD degree in technical sciences in 1979,
all from the Swiss Federal Institute of Technology (ETH) Zurich. Dr. Cellier worked
at the University of Arizona as professor of Electrical and Computer Engineering
from 1984 until 2005. He recently returned to his home country of Switzerland where
he assumed a position with ETH Zurich. Dr. Cellier's main scientific interests concern
modeling and simulation methodologies, and the design of advanced software systems
for simulation, computer aided modeling, and computer-aided design. Dr. Cellier has
authored or co-authored more than 200 technical publications, and he has edited sev-
eral books. He published a textbook on Continuous System Modeling in 1991 and a
second textbook on Continuous System Simulation in 2006, both with Springer-
Verlag, New York. He served as general chair or program chair of many international
conferences, and served recently as president of the Society for Modeling and Simula-
tion International.

Prof. Dr. Frangois E. Cellier
Institute of Computational Science

30 P. Fritzson et al.

CAB G82.1

ETH Ziirich

CH-8092 Ziirich

Switzerland

Phone: +41(44)632-7474

Fax: +41(44)632-1374

Mobile: +41(79)416-7546

Email: fcellier@inf.ethz.ch

URL: http://www.inf.ethz.ch/~fcellier/

Christoph Nytsch-Geusen received his PhD in Engineering at Technology Univer-
sity of Berlin in 2001. Since 2001 he is responsible for the development of simulation
methods and simulation tools for complex technical systems at Fraunhofer FIRST.
These research activities are focused on object oriented modeling, model compilers,
simulation runtime systems, simulator coupling and the integration of simulation tools
in the design process of technical systems. He was the leader of a joint project of six
Fraunhofer Institutes (2004-2007), within the Modelica-based simulation tool MOSI-
LAB was developed. At University of Arts Berlin he holds a chair in “Building Ser-
vices Engineering” since 2007, where his research activities are focused on modeling
and simulation of complex energy supply systems for single buildings and whole
districts.

Prof. Dr.-Ing. Christoph Nytsch-Geusen

Fraunhofer Institute for Computer Architecture and Software Technology
D-12489 Berlin, Germany

Phone +49 (0) 30/6392-1919

Telefax: +49 (0) 30/6392-1805

Email: christoph.nytsch @first.fraunhofer.de

Internet: http://www. first.fraunhofer.de

David Broman is currently pursuing his PhD in computer science at Linkoping Uni-
versity, Sweden, where he also received his M.Sc. degree in 2001. Before he started
his PhD work, he worked as a software engineer and technical project manager for a
security company in Stockholm. David's current research interest is focusing on lan-
guage semantics and type systems of equation-based object-oriented languages. He is
a member of the Modelica Association and has been active in the Modelica design
group since 2005.

David Broman

Department of Computer and Information Science
Link6ping University

SE-581 83 Linkoping

Sweden

Phone: +46(0)13-285724

Fax: +46(0)13-285899

Mobile: +46(0)707-909075

URL: http://www.ida.liu.se/~davbr/

3 Participants

Equation-Based Object-Oriented Languages and Tools 31

The number of participants of this first EOOLT workshop was 19, of which 18 were
physically present and one connected by electronic web conferencing; 17 are present

in the table below.

Name Affiliation Country Email
Bernhard University of Germany bernhard.bachmann @th-bielefeld.de
Bachmann Applied Sciences,
Bielefeld
Felix Breitenecker Vienna University | Austria felix.breitenecker@tuwien.ac.at
of Technology
David Broman Linkoping Sweden davbr@ida.liu.se
University
Francois E. Cellier ETH Switzerland fecellier@inf.ethz.ch
Peter Fritzson Link6ping Sweden petfr@ida.liu.se
University
Ramine Nikoukhah | Inria France ramine.nikoukhah @inria.fr
Henrik Nilsson University of UK nhn@cs.nott.ac.uk
Nottingham
Christoph University of Fine | Gerrmany christoph.nytsch @first.fraunhofer.de
Nytsch-Geusen Arts, Berlin,
Adrian Pop Linkoping Sweden adrpo@ida.liu.se
University
Olaf Fraunhofer Germany olaf.enge @eas.iis.fraunhofer.de
Enge-Rosenblatt Institute for
Integrated Circuits
Miguel A. Rubio UNED Spain marubio@dia.uned.es
Carl-Johan Sjostedt | Royal Institute of Sweden carlj@md kth.se
Technology
Giinther Zauner Vienna University | Austria guenther.zauner @drahtwarenhandlung.at
of Technology
Dirk Zimmer ETH Switzerland dzimmer @inf.ethz.ch
Johan Akesson Lund University Sweden jakesson @control.Ith.se
Michael Cebulla TU Berlin Germany mce@cs.tu-berlin.de
Gilad Bracha Cadence U.S.A. gilad @bracha.org

4 Contributions

All papers are published electronically by Link&ping University Electronic Press and
available in the electronic proceedings at http://www.ep.liu.se/ecp/024/.

All presentations (together with the papers) are also available at the EOOLT’2007
web site: http://www.ida.liu.se/labs/pelab/conf/ecolt07/.

The workshop sessions are briefly described below. Each session started with pa-
per presentations, followed by a discussion related to the topic of that particular ses-
sion. Some discussion also took place during the paper presentations.

32 P. Fritzson et al.

4.1 Integrated System Modeling Approaches

This session grouped paper that especially emphasized integrated modeling tools for
complex systems and integrated modeling environments aimed towards the whole
development process. Session chair: Peter Fritzson.

In “The use of the UML within the modeling process of Modelica models,”
Christoph Nytsch-Geusen presented work on an integration of a subset of UML and
Modelica called UML". The UML class diagrams, state chart diagrams, and collabo-
ration diagrams are integrated in an extended subset of Modelica including special
UMLY, graphical annotations, and language extensions for statechart support. An ex-
ample model and simulation of a Pool-Billiard game using this approach was shown.

In “Towards Unified System Modeling with the ModelicaML. UML Profile,”
Adrian Pop, David Akhvlediani, and Peter Fritzson presented the new ModelicaML
UML profile, based on both SysML and Modelica, with (currently incomplete) im-
plementation in Eclipse based on the Eclipse Modeling Framework EMF. This inte-
grates the graphical software modeling of UML with Modelica modeling of physical
systems, thus giving a rather complete integrated approach for full software-hardware
complex system development.

In “Developing Dependable Automotive Embedded Systems using the EAST-ADL,”
Carl-Johan Sjostedt, De-Jiu Chen, Phillipe Cuenot, Patrick Frey, Rolf Johansson, Hen-
rik Lonn, David Servat and Martin Torngren presented the EAST-ADL modeling lan-
guage (Embedded Automotive Systems — Architectural Description Language), which
is structured in five levels: vehicle, analysis, design, implementation, and operation.
Since EAST-ADL is partly implemented as a UML2 profile, an attempt to model a
small electrical circuit using SysML parametric diagrams was presented. Difficulties
were observed because of the absence of flow variables in SysML. The solution of us-
ing flow-split is rather cumbersome.

During the following discussion some questions were raised. For example, why not
use the SysML profile instead of UML"? The explanation is that UML" was devel-
oped much earlier than SysML, partly based on the Smile system and later the MOSI-
LAB effort. The second talk also presented an integration approach between Modelica
and UML, now based on SysML and Eclipse. There was a question regarding the dif-
ference between UML and Modelica connection diagrams. Why do you have both?
The UML-style is less compact but better known to software developers, the Mode-
lica-style is common among engineers and usually more compact.

Regarding the third talk, there were some questions — why is EAST-ADL needed,
since we have Modelica, VHDL-AMS, SysML etc. EAST-ADL is more specific to
the automotive sector, but there are similar efforts and library developments, e.g., for
automotive modeling based on Modelica. The EAST-ADL implementation is cur-
rently an UML profile.

There was a general discussion regarding continued work in the area, because of
the parallel efforts, e.g., Modelica and SysML, as to which approach is more fruitful,
standardizing or providing translations between the formalisms. One problem con-
cerns the fuzzy semantics of many modeling languages, especially UML/SysML,
which need to be made more precise. There is also a trend with increasing importance
to have integrated system development approaches for whole systems including both
software and hardware.

Equation-Based Object-Oriented Languages and Tools 33

It was also remarked that too early standardization and efforts at adoption might be
harmful. Instead, focus should be on the hard technical problems, try to solve those,
and exchange experiences and results between the different groups.

4.2 Hybrid Modeling and Variable Structure Systems

As apparent from the title, the talks in this session concern two topics: hybrid con-
tinuous-time and discrete-time modeling and simulation, and variable structure sys-
tems where the structure and number of equations can change at run-time. Session
chair was Bernhard Bachmann.

In “Hybrid dynamics in Modelica: Should all events be considered synchronous,”
Ramine Nikoukhah compared the event semantics of Modelica and Scicos and argued
that the Modelica semantics is ambiguous, leading to distinct interpretations by dif-
ferent implementations (e.g., Dymola and Scicos) as to whether certain events are
synchronous or not. It is argued that it is better for events to be considered synchro-
nous only if they can be traced back (e.g., through equations) to the same event
source, and that this leads to a more efficient and simpler implementation.

In “Extensions to Modelica for efficient code generation and separate compila-
tion,” Ramine Nikoukhah complemented the topic of the previous presentation by
presenting a consistent way of separate compilation of (Modelica) models as black
boxes, which then would have event inputs and event outputs as well as regular inputs
and outputs. This would make it possible to connect separately compiled Modelica
models, e.g., to models implemented in other formalisms, such as Scicos, Simulink or
plain C code.

The next two talks concerned the topic of modeling and simulation of variable
structured systems (structural dynamics), i.e., systems where objects can be intro-
duced, removed, and connected/disconnected at run-time. MOSILAB has previously
developed a solution to the modeling of structural dynamics by a language extension
to Modelica supporting UML state charts.

In “Enhancing Modelica towards variable structure systems,” Dirk Zimmer pre-
sented ideas and ongoing work on a new Modelica-like modeling language, called
Sol, where several restrictions in standard Modelica have been removed and new fea-
tures added, in particular being able to handle variable structured systems. Sol is in-
tended as a research language to explore ideas, with an interpretive implementation. A
model of a machine with a flywheel is sketched in the Sol language.

In “Functional Hybrid Modeling from an Object-Oriented Perspective,” Henrik
Nilsson, John Peterson, and Paul Hudak presented ideas for how to combine func-
tional programming and modeling to create more powerful modeling languages for
hybrid systems. In earlier work, they created a framework for causal hybrid modeling
called Functional Reactive Programming (FRP). The goal now is to generalize this
towards equation-based modeling (Functional Hybrid Modeling, FHM), in particular
to create a declarative language that supports highly structurally dynamic models,
based on the power of functional programming concepts combined with run-time
code generation. The concept of first class signal relations is introduced. Ideas are
sketched for an equation-based language (called Hydra), and a broken pendulum
example model is shown. The work is still in an early stage.

34 P. Fritzson et al.

In the following discussion, a number of issues were raised. One point is that there
is concern for increased model complexity if we remove the Modelica rule that the
number of variables must equal the number of equations, as in the first talk for dis-
crete-time variables. Partial answer: these are essentially proposals for intermediate
language constructs for hybrid system modeling. They allow to introduce the valuable
feature of separate compilation of models/blocks, e.g., in conjunction with Modelica.

Regarding the Sol language, there were some questions about the implementation
strategy. Why are programs coded in Sol being interpreted rather than compiled? Mo-
tivation: the approach makes it easy to handle structural variation at run-time, i.e., to
create/exchange/destruct components on the fly. Sol is designed as a research tool
only. The language serves as a proof-of-concept tool, and its implementation must be
considered a prototype environment only. Will this approach not limit the tool to deal-
ing with toy problems only? Could just-in-time code generation be used instead of
interpretation? Right now, the language is being interpreted, and the flattened system
of equations is updated at run-time.

The talk on functional hybrid modeling introduced many interesting ideas. It fo-
cused on relations of signals. At a structural change, use a switching function to add
or remove signal relation functions in a collection. Hierarchical modeling is done
through signal relations. Classes are nice but not needed for hierarchical modeling.
One question: why not use constraints? Answer: functions are essential. Relations
describe Modelica equations. Another question: functional programming is not widely
used, what should be done about that? Answer: this is primarily aimed at a semantic
language for dynamic modeling environments.

4.3 Modeling Languages, Specification, and Language Comparison

This session contained presentations and discussions on modeling languages, tools,
and comparisons, as well as the topic of more precise specifications of modeling lan-
guage semantics. Session chair was Christoph Nytsch-Geusen.

In “Important characteristics of VHDL-AMS and Modelica with respect to model
exchange,” Olaf Enge-Rosenblatt, Joachim Haase, and Christoph Clauf} presented a
modeling language comparison between the IEEE-standardized language VHDL-
AMS and the language Modelica to describe analog and mixed-signal systems. The
underlying modeling approaches were compared. Further, the potential to transform
models written in one language into models of the other language was discussed.

In “Modeling Structural Dynamics Systems in Modelica/Dymola, Modelica
/Mosilab, and AnyLogic”, Glinther Zauner, Daniel Leitner, and Felix Breitenecker
presented a tool comparison between the three state-of-the-art DAE simulation envi-
ronments Dymola, Mosilab, and AnyLogic regarding the possibilities of coupling of
different state spaces. For this purpose, the three modeling approaches “parallel model
setup,” “serial model setup,” and “‘combined model setup” were discussed. The analo-
gies and discrepancies between these approaches were discussed by use of the classi-
cal constrained pendulum example as defined in the ARGESIM comparison C7.

In “Abstract Syntax Can Make the Definition of Modelica Less Abstract,”
David Broman and Peter Fritzson discussed different aspects of formulating a Mode-
lica language specification. They proposed a "middle-way" strategy, which can make
the specification both clearer and easier to reason about. For this purpose, a proposal

Equation-Based Object-Oriented Languages and Tools 35

was formulated, whereby the current informally specified Modelica semantics are
complemented with several grammars, specifying intermediate representations of ab-
stract syntax.

In “Physical Modelling with ModelVision, a DAE Simulator with Features for Hy-
brid Automata,” Giinther Zauner, Yuri Senichenkov, and Yuri Kolesov presented the
modeling capabilities of the hybrid simulator ModelVision. The simulation technol-
ogy of this simulation tool is based on hybrid state charts, which makes parallel, se-
rial, and conditional combination of continuous models possible, described by DAEs
as mathematical equations. State models themselves can be instantiated and replaced
as objects during the simulation experiment for modeling and simulating structural
dynamic systems. The talk was given by Felix Breitenecker in proxy for the authors.

Regarding the first presentation, one question was regarding VHDL-AMS models:
are they compatible between different tools? Is the objective a full model translation
tool between VHDL-AMS and Modelica? The answer: not really at this stage, this
would be too difficult, and modeling language semantics are still too imprecise.

The second presentation compared three different tools using a constrained pendu-
lum example. The question arose, how these tools can be fairly compared with each
other? For example, Modelica allows DAEs, and its implementations usually support
index reduction, but AnyLogic currently does not support either index reduction or
event handling, which is a serious limitation. Another question raised in the context of
MOSILAB that supports UML state charts: are such asynchronous UML state charts
really desirable since they prevent the modeler from being able to prove the absence
of deadlocks in models? Would it not be more fruitful to work with synchronous
model approaches like the Modelica StateGraph library?

The third talk presented ideas how to make model language specifications more
precise by combining informal specification, abstract syntax, and additional grammar
fragments. One question concerned itself with the kind of grammars used: are they
context free or context dependent? Answer: they are context dependent, since certain
meta variables range over names and identifiers.

The presentation on the ModelVision tool was an interesting example of a long-
term tool development effort in Russia going on in parallel to the mainstream devel-
opments, and now supporting many advanced features such as hybrid simulation and
index reduction.

In general, it was concluded that more precise language semantics definitions are
needed to make progress in model exchange between different modeling languages.
The third talk presented some ideas how to make progress in this direction. However,
much work is needed before models can be translated automatically, and in many
cases there are low-level properties that make automatic model exchange really hard
to attain.

4.4 Tools and Methods

The tools and methods session presented three papers of different aspects of modeling
and simulation tools. Session chair was Peter Fritzson.

In “An Approach to the Calibration of Modelica Models,” Miguel A. Rubio, Al-
fonso Urquia, and Sebastian Dormido presented a new Modelica library GAPILib
based on genetic algorithms used for identification of unknown model parameter

36 P. Fritzson et al.

values from measurement data. An application of estimating parameters in a fuel cell
model was presented.

In “Dynamic Optimization of Modelica Models — Language Extensions and
Tools,” Johan Akesson presented work on extending the Modelica language also for
optimization, with a language extension called Optimica. This superimposes four as-
pects on a model: information about Modelica variables, specification of a grid, defi-
nition of a cost function, and specification of constraints. Its use in formulating and
solving a start-up problem for a plate reactor system was also presented.

In the paper “Robust Initialization of Differential Algebraic Equation,” Bernhard
Bachmann, Peter Aronsson, and Peter Fritzson presented a more robust method for
initialization of DAE systems based on initialial equation systems. The method allows
the initial equation systems to be overdetermined, solved by least square minimiza-
tion, which gives additional flexibility in specifying initial conditions locally in each
component model without concerns for possible problems with overdetermined initial
equation systems. Currently, initial equations usually have to be specified in the top
level application model to avoid problems with overdetermined systems. An applica-
tion with a 3-phase electrical system with Park transformations was presented.

In the following discussion, regarding talk 1, identification of unknown parame-
ters, there was a question regarding the choice of optimization algorithms: why ge-
netic algorithms, aren’t those inefficient? Answer: genetic algorithms are simple to
understand and use and possibly modify. Another advantage is that there is no need to
change the model. Another question: how do other methods, e.g., Tabu search, com-
pare? Answer: this has not yet been investigated.

Regarding the optimization talk, there were questions regarding formulating the
upper and lower bounds, needs for a special backend. A program called Socks was
mentioned that should be somewhat similar to the presented work. Can we switch
optimization algorithms without changing the model?

Finally, regarding the robust initialization, there were questions regarding the scal-
ability: will the method work efficiently with 100 or more state variables instead of 6
as in the example? According to the presenter, the approach should scale up. The op-
timization algorithm is fairly efficient, and even complex applications have seldom
more than a hundred or a few hundred state variables. Another question concerned if-
equations: which region should be optimized? Answer: keep one branch constant
while varying the other, then keep the second branch constant while varying the first.

To summarize: tools and methods for analyses related to modeling and simulation
are becoming increasingly important to help prepare models for solution, e.g., pa-
rameter identification and initialization, or post processing and additional analysis
such as optimization, which uses simulation for a particular purpose.

5 Discussion of Future Directions of Equation-Based Languages

The workshop ended with a general discussion about possible future directions of
EOO languages and tools. The discussion was roughly divided into the following
topics.

Equation-Based Object-Oriented Languages and Tools 37

5.1 New Directions

What new directions can be discerned in the area? Optimization was mentioned as
one such area. Metamodeling, model unification (see below) is another. Static analy-
sis of models for verification is already established in the embedded systems commu-
nity, and should increasingly be relevant here.

A current trend is increased emphasis on model-based development for embedded
systems, not just simulation. This includes generation of embedded code, e.g., in con-
trollers, perhaps with fixed-point support, and more emphasis on real-time issues in
general.

5.2 Tool Integration and Tool Interfaces

There is increasing recognition that tools need to be more modular with clearly de-
fined interfaces/APIs and interface formats between the phases/modules. This will
have advantages such as:

e Enables extensible plugin development e.g., as in Eclipse.
¢ Enables tool certification.

There was also some discussion on the availability of the flat structure of equa-
tions. Is this enough? The main reason is that it is easier for many tools to operate on
the flat structure.

5.3 Variable Structure Systems

Support for variable structure systems is a hot future topic that needs to find good
solutions. The challenge is to combine the advantages of efficient code and static
checking of fixed-structure models with the flexibility of variable structured systems.
For example, what is the cost of restructuring, and can that be brought down? These,
and similar, issues need to be studied more closely.

5.4 Metamodeling, Reflection, Model Unification

Metamodeling, operations on models, and model transformations are topics of in-
creasing importance and tools become more capable and extensible. The models
themselves could be made extensible by including new analyses and transformations
in the models instead of in monolithic tools.

There is a trend to use separate untyped scripting languages together with modeling
languages. Instead, it might be desirable to generalize the modeling languages them-
selves to handle models, have functions that return models, and operate on models
with a type system that includes all this.

5.5 Integrated Modeling Approaches

Integrated modeling approaches could mean approaches for metamodeling by com-
bining black box models, co-simulation, or tool integration in general. This is an in-
creasing trend and strongly dependent on the tool integration mentioned previously.

38 P. Fritzson et al.

6 Conclusions

The participants felt that this was a successful workshop, the first in its series. The
area of equation-based object-oriented (EOO) languages and tools is of rapidly in-
creasing importance. It is important to engage more computer scientists in this area,
which is one of the motivations of co-locating the workshop with ECOOP.

It is important to bring in a wider spectrum of languages and tools, with less domi-
nance of Modelica-related work. For example, why not include also PDE or FEM
modeling languages and tools? It was felt that the workshop should be continued and
possibly expanded. The discussions in the workshop were good. In case there will be
more papers presented at future workshops, the time per presentation has to be re-
duced in order to keep enough time for discussions.

Some references are given below as a background to this area.

References

[1] Accellera, Cadence: Verilog-AMS Language Reference Manual Version 2.2, Published
by: Accellera, 1370 Trancas Street, #163, Napa, CA 94558 (November 2004)

[2] Augustin, D.C., Fineberg, M.S., Johnson, B.B., Linebarger, R.N., Sansom, F.J., Strauss,
J.C.: The SCi Continuous System Simulation Language (CSSL). Simulation (9), 281-303
(1967)

[3] Birtwistle, G.M., Dahl, O.J., Myhrhaug, B., Nygaard, K.: SIMULA BEGIN. Auerbach
Publishers, Inc. (1973)

[4] Breunese, A.P.J., Broenink, J.F.: Modeling Mechatronic Systems Using the SIDOPS+
Language. In: Proceedings of ICBGM 1997, 3rd International Conference on Bond Graph
Modeling and Simulation, Phoenix, Arizona. Simulation Series, vol. 29(1), pp. 301-306.
SCS Publishing, San Diego, California (1997), http://www.rt.el.utwente.nl/proj/modsim/
modsim.htm

[5] Cellier, F.E.: Continuous System Modelling, p. 755. Springer, New York (1991)

[6] Cellier, F.E., Kofman, E.: Continuous System Simulation, p. 643. Springer, New York
(2006)

[7] Christen, E., Bakalar, K.: VHDL-AMS — A Hardware Description Language for Analog
and Mixed-Signal Applications. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing 46(10), 1263—-1272 (1999)

[8] Clabaugh, J., Tolsma, J.E., Barton, P.I.: Abacuss II: Advanced Modeling Environment
and Embedded Simulator, and Abacuss II Syntax Manual. Massachusetts Institute of
Technology, Chemical Engineering System Research Group (1999), Available at
http://yoric.mit.edu/abacuss2/abacuss2.html

[9] Elmgqvist, H.: A Structured Model Language for Large Continuous Systems. Ph.D. thesis,
TFRT-1015, Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden (1978)

[10] Ernst, T., Jdhnichen, S., Klose, M.: The Architecture of the Smile/M Simulation Envi-
ronment. In: Proceedings 15th IMACS World Congress on Scientific Computation, Mod-
elling and Applied Mathematics, Berlin, Germany, vol. 6, pp. 653-658 (1997)

[11] Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,
p. 940. Wiley-1EEE Press (2004) ISBN 0-471-471631

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
(20]

[21]
[22]

Equation-Based Object-Oriented Languages and Tools 39

Fritzson, P., Viklund, L., Fritzson, D., Herber, J.: High Level Mathematical Modeling and
Programming in Scientific Computing, IEEE Software, pp. 77-87 (July 1995)

Mattsson, S.-E., Andersson, M.: The Ideas Behind Omola. In: CADCS 1992. Proceedings
of the 1992 IEEE Symposium on Computer-Aided Control System Design, Napa, Cali-
fornia, March 17-19, 1992, pp. 23-29 (1992)

Oh, M., Pantelides, C.C.: A modelling and Simulation Language for Combined Lumped
and Distributed Parameter Systems. Computers and Chemical Engineering 20(6-7), 611—
633 (1996)

Piela, P.C., Epperly, T.G., Westerberg, K.M., Westerberg, A.W.: ASCEND: An Object-
Oriented Computer Environment for Modeling and Analysis: The Modeling Language.
Computers and Chemical Engineering 15(1), 53-72 (1991)

Sahlin, P., Sowell, E.F.: A Neutral Format for Building Simulation Models. In: Proceed-
ings of the Conference on Building Simulation, IBPSA, Vancouver, Canada, pp. 147-154
(1989)

Sargent, R.-W.H., Westerberg, A.W.: Speed-Up in Chemical Engineering Design. Chemi-
cal Engineering Research and Design 42a, 190-197 (1964)

The Mathworks. Simulink — Simulation and Model-Based Design (Last accessed: March
6, 2007), http://www.mathworks.com/products/simulink/

The Modelica Association. The Modelica Language Specification Version 3.0 (Septem-
ber 2007), http://www.modelica.org

Tiller, M.: Introduction to Physical Modeling with Modelica, p. 368. Springer, New York
(2001)

UML Homepage: http://www.uml.org

van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax, and
consistent equation semantics of hybrid Chi. The Journal of Logic and Algebraic Pro-
gramming 68, 129-210 (2006)

Aliasing, Confinement, and Ownership in
Object-Oriented Programming
Report on the Workshop IWACO’07 at ECOOP 2007

Dave Clarke!, Sophia Drossopoulou?, James Noble3, and Tobias Wrigstad*

L CWI, Amsterdam, The Netherlands
dave@cwi.nl
2 Imperial College, London, UK
sd@doc.ic.ac.uk
3 Victoria University of Wellington, New Zealand
kjx@mecs.vuw.ac.uk
4 Stockholm University, Stockholm, Sweden
tobias@dsv.su.se

Abstract. The power of objects lies in the flexibility of their inter-
connection structure. But this flexibility comes at a cost. Because an
object can be modified via any alias, object-oriented programs are hard
to understand, maintain, and analyse. Aliasing makes objects depend
on their environment in unpredictable ways, breaking the encapsulation
necessary for reliable software components, making it difficult to reason
about and optimise programs, obscuring the flow of information between
objects, and introducing security problems.

Aliasing is a fundamental difficulty, but we accept its presence. In-
stead we seek techniques for describing, reasoning about, restricting,
analysing, and preventing the connections between objects and/or the
flow of information between them. Promising approaches to these pro-
blems are based on ownership, confinement, information flow, sharing
control, escape analysis, argument independence, read-only references,
effects systems, and access control mechanisms.

1 Introduction

The aim of the IWACO workshop was to address the question how to manage
interconnected object structures in the presence of aliasing. In, particular the
following issues were covered:

— models, type and other formal systems, programming language, separation
logic, mechanisms, analysis and design techniques, patterns, tools and no-
tations for expressing object ownership, aliasing, confinement, uniqueness,
and/or information flow;

— optimisation techniques, analysis algorithms, libraries, applications, tools,
and novel approaches exploiting object ownership, aliasing, confinement, un-
iqueness, and/or information flow;

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 40149 2008.
© Springer-Verlag Berlin Heidelberg 2008

Aliasing, Confinement, and Ownership in Object-Oriented Programming 41

— empirical studies of programs or experience reports from programming sys-
tems designed with these issues in mind;

— novel applications of aliasing management techniques such as ownership ty-
pes, ownership domains, confined types, region types, and uniqueness.

1.1 History

IWACO 2007 was the third ECOOP workshop focussing on aliasing. The pre-
vious workshops were IWACO 2003 [2] and the Intercontinental Workshop on
Aliasing in Object-oriented Systems (IWAOOS) in 1999. The issues addressed
in this workshop were first brought into focus with the Geneva Convention on
the Treatment of Object Aliasing [5].

2 Invited Talk

The invited speaker, Vijay Saraswat, affiliated with IBM T. J. Watson Research
Lab and Penn State University, talked about X10, an experimental new language
currently under development at IBM [§]. X10 sports a few concepts of interest to
the IWACO crowd, most notably the notion of place types which are dependent
types expressing that data lives (or computation happens) at a specific place and
what places are available to a computation. In addition, X10’s use of constraint-
based type systems, rather than more direct-style type systems, generated quite
a bit of discussion, as the constraint-based approach gels well with the idea
of automatically generating ownership and aliasing conditions. The type system
Saraswat presented was undecidable, as it relied heavily on dependent types, but
he argued that this was not a big problem, as the programs that cause problems
are pathological.

3 The Presentations

In addition to the invited talk, there were 15 presentations at IWACO. These
were of 5, 10, or 25 minutes in length, depending upon how well-developed the
submission was, and thus ample time for discussion was available.

4 Comparative Summary of Contributions and Debates

Although many ideas from each talk related to ideas in other talks, and the
discussions that were triggered cross-cut the entire spectrum of topics, for cohe-
rency, we have grouped the presentations into the following categories:

— (ownership) inference—techniques to overcome the syntactic overhead of ex-
tant aliasing annotation and ownership types systems;

— ownership in the real world—case studies applying ownership types to real
world applications or corpora of real world programs;

42 D. Clarke et al.

— project overviews—the state of the art and plans of various groups working
on aliasing;

— theoretical developments—contributions to the (type) theory underlying ow-
nership types and other approaches to dealing with (the effects of) aliasing
in object-oriented programming; and

— (re)emerging techniques—mnew approaches to addressing aliasing, or existing
techniques seen in a new light.

4.1 (Ownership) Inference

Aliasing analyses and ownership types [4] systems rely on annotations to work.
Important issues that need to be addressed include the annotating of existing
code bases, techniques to reduce the volume of annotations that a programmer
needs to add, and tools to provide programmer assistance to determine what the
best annotations are. Three presentations addressed these issues.

Rather than applying a pure static analysis technique, Werner Dietl and Pe-
ter Miiller attempted Runtime Universe Type Inference. Their approach relies on
runtime information to determine the annotations. The paper describes the ar-
chitecture and implementation of a system that infers Universe ownership types
from the run-time access patterns of Java programs. Although the Universe type
system has a low annotation overhead, annotating existing software is a conside-
rable effort. The paper described how to analyze the execution of programs and
infer ownership modifiers from the resulting execution traces. An Eclipse plug-in
was demonstrated. It was based on a C program that traces JVM execution and
a Java application that infers the Universe annotations.

The idea of using both static and dynamic techniques was also presented in
Compile-Time Views of Execution Structure Based on Ouwnership, by Marwan
Abi-Antoun and Jonathan Aldrich. They argued that developers need to under-
stand both the static and dynamic structure of object-oriented programs, and
that class diagrams are not sufficient to understand the static code structure.
Furthermore, they argued that raw object graphs produced either via static or
dynamic analysis also tend not to convey design intent and do not scale to large
programs. The approach taken was to use the stronger (hierarchical) encap-
sulation guarantees of ownership types systems to produce more intuitive and
appealing visualizations of a system’s dynamic structure. By taking ownership
information into account, a hierarchical representation can be built and uses of
the same class in different domains are kept separate. Two case studies of 15,000
line large programs were presented and the results look promising, as in both
cases, the automatically generated visualization fitted on one page, and provided
insights into the dynamic structure that would be otherwise hard to obtain by
looking at the code or at existing class diagrams.

Not everyone was convinced that dynamic techniques were required. Instead,
annotations on the boundaries of ‘modules’ significantly improve the scalability
of analysis. This was essentially the point argued by by Mike Barnett, Manuel
Fahndrich, Diego Garbervetsky and Francesco Logozzo in their talk Annota-
tions for (more) Precise Points-to Analysis. They extended Salcianu’s existing

Aliasing, Confinement, and Ownership in Object-Oriented Programming 43

points-to analysis to support .NET’s structs and parameter passing by reference,
and increased precision by handling non-analyzable methods—those whose code
is unavailable because it is abstract, virtual (and unresolved) or native. For
such methods, an extension that models potentially affected heap locations was
introduced. A combined points-to/effects annotation language was designed to
provide modular analysis without the loss of too much precision. A preliminary
evaluation was described, showing the benefits of the aliasing declarations for
verifying purity annotations.

The discussion revolved around the degree to which various subtleties of the ap-
proaches produced the best results. Pure static analysis seemed to be insufficient
in general to produce good annotations of programs. This is where the dynamic
approach helped, by seeding the analysis process with a first approximation. Vi-
sualization tools enabled the annotations to be refined to closer match program-
mer expectations. After the boundaries of certain modules were annotated, static
analysis techniques could leverage that information to more effectively analyze
smaller code fragments. It was noted that the additional benefit of ownership and
alias inference was that they can identify bad design ‘smells’ in existing systems.
Some evidence for this idea was presented from the case studies.

4.2 Ownership in the Real World

Ownership types have been around for nearly 10 years, though insufficient work
has been done in applying them in the context of large systems. A number
of researchers are addressing this issue, either on an application-by-application
basis, or by (semi-)automatically analyzing large corpora of programs.

The paper Using ownership types to support library aliasing boundaries, by
Luke Wagner, Jaakko Jarvi and Bjarne Stroustrup, applied ownership to con-
current library design in C++. Their key concept is the notion of a tether, which
is a (smart) object pointer that is only valid inside the right thread (its owner).
The paper presented a case study on the use of object ownership to prevent con-
currency problems. The case study was a 3D computer game, in a 6 month, 10
developer project. Interactive games need concurrency, but concurrency is hard
to get right. A system of ownership-based rules and an explicit representation of
ownership were proposed to prevent bugs from the incorrect concurrency. Alt-
hough the developers were inexperienced, there were no problems with data races
in the multi-threaded application. This paper thus demonstrated the benefit of
having ownership in the language and argued that this can apply not just to
concurrency libraries, but also to memory, security, and resource management.

Marwan Abi-Antoun presented Quwnership Domains in the Real World, joint
work with his supervisor Jonathan Aldrich. His talk described the publicly availa-
ble tool that supports the Ownership Domains type system. As their original
implementation was not backwards compatible with Java and ran on research
infrastructure, it was difficult to conduct substantial case studies on interes-
ting systems. Consequently, they re-implemented their system using Java 1.5
and Eclipse. The resulting tool was used to annotate two real 15,000-line Java
programs, with the aid of refactoring tools.

44 D. Clarke et al.

The first paper differed from most of the remainder of the presentations at the
workshop as it considered both ownership and concurrency. Discussion revolved
around the relationship between the authors’ approach and some existing attacks
on concurrency using ownership. The paper seemed to present a new approach,
by tying the dynamics of a program to the ownership relationship, and thereby
points to a useful direction for future research. These two papers illustrate that
various kinds of ownership type systems can express and enforce design intent
related to object encapsulation and communication. Some expressiveness gaps
in the various approaches were described, and audience members posed possible
solutions, or noted the problems as topics for future work. In addition, there
was some postulation about other situations that could benefit from the various
approaches discussed.

4.3 Project Overviews

A number of groups around the world are working on ownership types and
aliasing. Two groups took the opportunity to present an overview of what they
have been doing in the last few years, and what their plans for the future are.
The talks OQuwnership Meets Java by Christo Fogelberg, Alex Potanin and James
Noble and 2007 State of the Universe Address by Werner Dietl and Peter Miiller
described the research in their groups. Noble’s talk focussed on piggy-backing
ownership types on top of Java’s generics. An alternative approach, also used
by other researchers, is to use Java’s annotation system. In both talks, the idea
is to exploit existing programming language features as much as possible to be
able to re-use existing programming tools, such as Eclipse. The observation is
that proposals not using existing language constructs will not be able to be, for
example, parsed by IDE’s or checking tools.

The idea of integrating ownership types into Java has a number of problems, as
many audience members pointed out. As there are numerous distinct ownership
type systems, each having its own uses and limitations, it is not clear, should
push come to shove, which one is the best candidate, nor is it clear whether it
is possible to unify them.

4.4 Theoretical Developments

Techniques for dealing with aliasing are often founded in type theory and pro-
gramming language semantics. Such theoretical techniques not only guarantee
the soundness of various proposals addressing aliasing problems, but also are a
rich source of new ideas for the more practical approaches to these problems.
Typed intermediate languages and typed assembly languages for optimizing
compilers require types to describe stack-allocated data. Frances Perry, Chris Ha-
whblitzel and Juan Chen’s Simple and Flexible Stack Types improved on existing
type systems by resolving the undecidability problem, and enabling a stronger
treatment of arguments passed by reference. The result was a simple, sound
and decidable type system, suitable for low-level intermediate languages, such
as Micro-CLI. Unlike most of the other papers presented at the workshop, this
paper used alias types, singleton pointers and a small subset of linear logic.

Aliasing, Confinement, and Ownership in Object-Oriented Programming 45

One of the trends in aliasing and ownership types system research is to inves-
tigate hybrid type systems that combine elements of ownership with read-only
references and/or immutability. Johan Ostlund’s talk Ownership, Uniqueness
and Immutability reported on joint work with Tobias Wrigstad, Dave Clarke
and Beatrice Akerblom. This talk described the benefits of such a hybrid type
system. Specifically, the combination of access modes with unique-reference ba-
sed ownership transfer could express patterns such as fractional permissions [1]
and much of flexible alias protection [7]. This research illustrated that one can
relatively easily exploit the infrastructure provided by a basic layer of ownership
types to achieve a lot more without much more effort, illustrating the robustness
of ownership types as a concept. A lot of discussion revolved around precisely
what was the right formulation of various concepts in order to obtain the most
flexibility whilst retaining strong guarantees.

Adrian Fiech and Ulf Schiinemann presented the potential access path me-
thodology for reasoning about composite objects. The presentation, Formalizing
Composite State Encapsulation, in spite of being short and technical, seemed to
offer a different attack on the owner-as-modifier discipline imposed by Miiller’s
Universe Types [6]. The novel contribution of the system was its treatment of un-
iqueness, enabling the transfer of subobjects (similar to Clarke and Wrigstad’s
External Uniqueness [3]). The audience agreed that this research represented
another point on the design space worth exploring.

An audience member pointed out a problem with the various approaches ba-
sed on or related to external uniqueness. They seem to be incompatible with
(internal) threads. Even if all external references to an object do not allow mo-
dification, an active internal thread with a mutable view of the object can break
invariants that depend on the perceived immutability. This open problem will
surely attract some research in the near future.

4.5 (Re)emerging Techniques

The workshop provided the perfect forum for researchers to present ideas that
were relatively immature. Such presentation generally provide fresh input to
stimulate new directions of research. Some of these presentations took a contro-
versial stance, expressing dissatisfaction with a particular approach or suggesting
a totally different perspective on the problems the workshop was interested in.
Sometimes casting an older technique in terms of object-oriented programming
offered a source of new ideas.

Four talks proposed research that shifted invariants and other reasoning tech-
niques from focussing on single objects to groups of objects. As most abstractions
are implemented using more than one object, this direction of research is natural.
The difficulty is that object-oriented programs are expressed in terms of classes,
which do not have the same granularity as the abstractions they are used to
implement.

Iterators can be Independent “from” Their Collections by John Boyland, Wil-
liam Retert and Yang Zhao focussed on the particular example of iterators,
which have caused problems for alias control mechanisms since their inception.

46 D. Clarke et al.

Iterators have access to the elements of a collection, but can be used in contexts
that are unaware of the existence of the collection. Consequently, iterators may
fail unexpectedly when their collections are modified. Boyland et al. proposed to
use fractional permissions [I] to control the interaction between the iterator and
the collection, and sketched a static analysis to detect concurrent modification
exceptions.

Matthew Parkinson presented a controversial and deliberately provocative
talk, Class Invariants: The End of the Road?, which revealed a number of com-
plications in scaling class invariants to real programs, namely, that class invari-
ants depend upon multiple objects and invariants need to be broken temporarily
owing to call-backs. Parkinson proposed the question: “Is the class invariant the
correct foundation for verifying object-oriented programs?” The example fo-
cussed on the subject-observer pattern, and the talk presented a heavy use of
invariants to show what can be done without class invariants. The challenge is
that class invariants have the advantage of being easy to understand for the pro-
grammer, and this seems to be lost by using predicates. One audience member
suggested that family polymorphism/virtual classes could solve the problem, by
shifting the class invariants to talk about a family of classes instead of just a
single class.

In some respects, the talk Maintaining Invariants Through Object Coupling
Mechanisms, by Eric Kerfoot and Steve McKeever, presented a possible counter-
argument to Parkinson’s contention. They focussed on the problems that arise
when an object’s invariant relies on objects that are externally aliased and mo-
dified, as the changes to the external object are uncontrolled and may invalidate
an object’s invariant. The talk informally described a technique for coupling ob-
jects (called the colleague technique), which defined additional conditions upon
objects involved in a strong relationship. Examples from the Java program-
ming language and the JML specification language were used to illustrate the
approach. Possible programming language support for this technique could be
provided by Erik Ernst’s primitive associations. These atomically maintained
the coupling relationship between objects. His idea is strongly related to those
posed by the other authors in this group, and it grows out of the mechanisms
for ownership, controlled aliasing, sharing, escape analysis, and so on.

Overall, it was clear that one of the main challenges for future research is
extending alias control mechanisms and formal reasoning systems to deal better
with groups of objects. The discussion mentioned a number of recent papers that
are taking steps in that direction.

The talk by Franz Puntigam, entitled See the Pet in the Beast: How to Limit
Effects of Aliasing, described a means for ensuring exclusive access to objects by
passing around tokens, without limiting the aliasing in the system. The approach
also enabled objects to enforce a state-based protocol to ensure that they were
used properly. Discussion revealed that there was a close relationship between
this idea and the older ideas of software protocol or type states [9], as these have
recently garnered some interest in the PLDI community. Transferring these ideas

Aliasing, Confinement, and Ownership in Object-Oriented Programming 47

to an object-oriented setting is non-trivial, and Puntigam’s approach offers some
insight on how this transfer could take place.

5 Discussion

In addition to the talks and debates already described, there was discussion
about the future direction of ownership. In particular, the question was raised
as to whether a JSR should be written so that a standard approach to ownership
could be devised and incorporated into Java. The conclusion seemed to be that
this is premature.

Another important issue was the lack of more longitudinal experience with
ownership (types), in particular, within the context of refactoring existing code
bases to support ownership. How do ownership annotations interplay with refac-
toring, program design and maintenance? Simple patterns such as “move field”
might require changes to class headers which will have (potentially severe) pro-
pagating effects throughout the entire program. It was concluded that more
research in this area was needed in order to incorporate ownership (types) into
a programmers’ toolset and workflow.

6 Future

It appears that the community working on aliasing and ownership has reached
critical mass, if the number of submissions, participants and presentations are
any indication. Consequently, we plan to repeat the workshop in conjunction
with ECOOP 2008.

References

1. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55-72. Springer, Heidelberg (2003)

2. Clarke, D., Drossopoulou, S., Noble, J.: Aliasing, confinement, and ownership in
object-oriented programming. In: Buschmann, F., Buchmann, A., Cilia, M.A. (eds.)
ECCV-WS 2003. LNCS, vol. 3013, pp. 197-207. Springer, Heidelberg (2004)

3. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176-200. Springer, Heidelberg (2003)

4. Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection. In:
OOPSLA, pp. 48-64 (1998)

5. Hogg, J., Lea, D., Wills, A., de Champeaux, D., Holt, R.: The Geneva Convention
on the treatment of object aliasing. OOPS Messenger 3(2), 11-16 (1992)

6. Miiller, P., Poetzsch-Heffter, A. (eds.): Universes: A Type System for Controlling
Representation Exposure, pp. 131-140 (1999)

7. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: Jul, E. (ed.) ECOOP
1998. LNCS, vol. 1445, pp. 158-185. Springer, Heidelberg (1998)

8. Saraswat, V.A., Sarkar, V., von Praun, C.: X10: concurrent programming for mo-
dern architectures. In: Yelick, K.A., Mellor-Crummey, J.M. (eds.) PPOPP 2007.
Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (2007)

48 D. Clarke et al.

9. Strom, R., Yemini, S.: Typestate: A programming language concept for enhan-
cing software reliabiity. IEEE Transactions on Software Engineering 12(1), 157-171

(1986)

A Participants

IWACO gathered 38 participants from 16 different countries.

Marwan Abi-Antoun
Jonathan Aldrich
Frank de Boer

John Boyland

Einar Broch Johnsen
Nicholas Cameron
Dave Clarke

Curt Clifton

Markus Degen

Mariangiola Dezani-Ciancaglini

Werner Dietl
Sophia Drossopoulou
Erik Ernst

Manuel Fahndrich
Yishai Feldman
Adrian Fiech

Diego Garbervetsky
Philippe Haller
Clément Hurlin
Jaako Jarvi

Eric Kerfoot
Ondrtej Lhotdk
Fracesco Logozzo
Yi Lu

Peter Miiller

James Noble

Johan Ostlund
Matthew Parkinson
Frances Perry

Arnd Poetzsch-Heffter
John Potter

Franz Puntigam
Vijay Saraswat
Peter Thiemann
Jan Vitek

Luke Wagner
Stefan Wehr

Tobias Wrigstad

Carnegie Mellon University (USA)
Carnegie Mellon University (USA)

CWI (The Netherlands)

University of Wisconsin-Milwaukee (USA)
University of Oslo (Norway)

Tmperial College (UK)

CWI (The Netherlands)

Rose-Hulman Institute of Technology (USA)
Universitit Freiburg (Germany)
University of Turin (Italy)

ETH Ziirich (Switzerland)

Tmperial College (UK)

University of Arhus (Denmark)

Microsoft Research (USA)

IBM Research (Israel)

Memorial University (Canada)
Universidad De Buenos Aires (Argentina)
EPFL (Switzerland)

Inria (France)

Texas A&M University (USA)

Oxford University (UK)

University of Waterloo (Canada)

Microsoft Research (USA)

University of New South Wales (Australia)
Microsoft Research (US)

Victoria University of Wellington (New Zeeland)
Stockholm University (Sweden)

University of Cambridge (UK)

Princeton University (USA)

University of Kaiserslauten (Germany)
University of New South Wales (Australia)
TU Wien (Austria)

IBM TJ Watson Research Lab (USA)
Universitit Freiburg (Germany)

Purdue University (USA)

Texas A&M University (USA)

Uni Freiburg (Germany)

Stockholm University (Sweden)

Aliasing, Confinement, and Ownership in Object-Oriented Programming 49

B Organisers

Dave Clarke

Sophia Drossopoulou
James Noble

Tobias Wrigstad

CWI (The Netherlands)

Imperial College (UK)

Victoria University of Wellington (New Zealand)
Stockholm University (Sweden)

C Program Committee

Jonathan Aldrich
Chandrasekhar Boyapati
Dave Clarke

Sophia Drossopoulou
Rustan Leino

Peter Miiller

James Noble

Peter O’Hearn

Alex Potanin

Jan Vitek

Tobias Wrigstad

Carnegie Mellon University (USA)

University of Michigan (USA)

CWI (The Netherlands)

Imperial College (UK)

Microsoft Research (USA)

ETH Zurich (Switzerland)

Victoria University of Wellington (New Zealand)
Queen Mary, University of London (UK)
Victoria University of Wellington (New Zealand)
Purdue University (USA)

Stockholm University (Sweden)

Implementation, Compilation, Optimization of
Object-Oriented Languages, Programs and
Systems

Report on the Workshop ICOOOLPS 2007 at
ECOOP 2007

Olivier Zendra', Eric Jul?, Roland Ducournau®, Etienne Gagnon?*,
Richard Jones®, Chandra Krintz®, Philippe Mulet”, and Jan Vitek®

L INRIA-LORIA, France
2 DIKU, Denmark
3 LIRMM, France
4 UQAM, Canada
5 Univ. of Kent, UK
® UCSB, USA
7 IBM, France
8 Purdue University, USA

Abstract. ICOOOLPS’2007 was the second edition of the ECOOP-
ICOOOLPS workshop. ICOOOLPS intends to bring researchers and
practitioners both from academia and industry together, with a spirit
of openness, to try and identify and begin to address the numerous and
very varied issues of optimization. After a first successful edition, this sec-
ond one put a stronger emphasis on exchanges and discussions amongst
the participants, progressing on the bases set last year in Nantes.

The workshop attendance was a success, since the 30-people limit we
had set was reached about 2 weeks before the workshop itself. Some
of the discussions (e.g .annotations) were so successful that they would
required even more time than we were able to dedicate to them. That’s
one area we plan to further improve for the next edition.

1 Objectives and Call for Papers

Programming languages, especially object-oriented ones, are pervasive and play
a significant role in computer science and engineering life. They sometime appear
as ubiquitous and completely mature. However, despite a large number of works,
there is still a clear need for solutions for efficient implementation and compi-
lation of OO languages in various application domains ranging from embedded
and real-time systems to desktop systems.

The ICOOOLPS workshop series thus aims to address this crucial issue of op-
timization in OO languages, programs and systems. It intends to do so by bring-
ing together researchers and practitioners working in the field of object-oriented

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 50{64] 200s.
© Springer-Verlag Berlin Heidelberg 2008

Implementation, Compilation, Optimization 51

languages implementation and optimization. Its main goals are identifying fun-
damental bases and key current issues pertaining to the efficient implementation,
compilation and optimization of OO languages, and outlining future challenges
and research directions.

Topics of interest for ICOOOLPS include but are not limited to:

— implementation of fundamental OOL features:

e inheritance (object layout, late binding, subtype test...)

e genericity (parametric types)

e memory management
— runtime systems:

e compilers

e linkers

e virtual machines
— optimizations:

e static and dynamic analyses

e adaptive virtual machines
— resource constraints:

e real-time systems

e embedded systems (space, low power)...

— relevant choices and tradeoffs:

e constant time vs. non-constant time mechanisms
separate compilation vs. global compilation
dynamic loading vs. global linking
dynamic checking vs. proof-carrying code
annotations vs. no annotations

This workshop thus tries to identify fundamental bases and key current issues
pertaining to the efficient implementation and compilation of languages, espe-
cially OO ones, in order to spread them further amongst the various computing
systems. It is also intended to extend this synthesis to encompass future chal-
lenges and research directions in the field of OO languages implementation and
optimization.

Finally, as stated from the very beginning and the very first edition in Nantes
in 2006, ICOOOLPS is intended to be a recurrent workshop in ECOOP. Since
the feedback from first year attendants was very positive, this second edition was
set up. We organizers integrated most of the suggestions for improvements made
in 2006, so as to further improve the workshop. The main adaptation was that
less time was given to presentations, in order to free extra time for discussions.

In order to increase bases on which the discussions could be based and to keep
them focused, each prospective participant was encouraged to submit either a
short paper describing ongoing work or a position paper describing an open
issue, likely solutions, drawbacks of current solutions or alternative solutions to
well known problems. Papers had to be written in English and their final version
could not exceed 8 pages in LNCS style (4 pages recommended).

52 O. Zendra et al.
2 Organizers

Olivier ZENDRA (chair), INRIA-LORIA, Nancy, France.
Email: olivier.zendra@inria.fr
Web: http://www.loria.fr/"zendra
Address: INRIA / LORIA
615 Rue du Jardin Botanique
BP 101
54602 Villers-Lés-Nancy Cedex, FRANCE

Olivier Zendra is a full-time permanent computer science researcher at IN-
RIA / LORIA, in Nancy, France. His research topics cover compilation, opti-
mization and automatic memory management. He worked on the compilation
and optimization of object-oriented languages and was one of the two people
who created and implemented SmartEiffel, The GNU Eiffel Compiler (at the
time SmallEiffel). His current research topics and application domains are pro-
gram analysis, compilation, memory management and embedded systems, with
a specific focus on low energy.

Eric JUL (co-chair), DIKU, Copenhagen, Denmark.
Email: eric@diku.dk
Web: http://www.diku.dk/~eric

Address: DIKU
Universitetsparken 1
DK-2100 Kgbenhavn @, DANMARK

Eric Jul is Professor of Computer Science at the University of Copenhagen and
head of the Distributed Systems Group. He is one of the principal designers of
the distributed, object-oriented language Emerald. He implemented fine-grained
object mobility in Emerald. His current research is in Grid Computing. He is
currently Vice-President of AITO.

Roland DUCOURNAU, LIRMM, Montpellier, France.
Email: ducour@lirmm.fr
Web: http://www.lirmm.fr/~ducour
Address: LIRMM,
161, rue Ada

34392 Montpellier Cedex 5, FRANCE

Roland Ducournau is Professor of Computer Science at the University of Mont-
pellier. In the late 80s, while with Sema Group, he designed and developed the
YAFOOL language, based on frames and prototypes and dedicated to knowledge
based systems. His research topics focuses on class specialization and inheritance,
especially multiple inheritance. His recent works are dedicated to implementation
of OO languages.

Implementation, Compilation, Optimization 53

Etienne GAGNON, UQAM, Montréal, Québec, Canada.
Email: egagnon@sablevm.org
Web: http://www.info2.uqam.ca/~egagnon
Address: Département d’informatique
UQAM

Case postale 8888, succursale Centre-ville
Montréal (Québec) Canada / H3C 3P8

Etienne Gagnon is a Professor of Computer Science at Université du Québec a
Montréal (UQAM) since 2001. Etienne has developed the SableVM portable re-
search virtual machine for Java, and the SableCC compiler framework generator.
His research topics include language design, memory management, synchroniza-
tion, verification, portability, and efficient interpretation techniques in virtual
machines.

Richard JONES, University of Kent, Canterbury, UK.
Email: R.E.Jones@kent.ac.uk
Web: http://www.cs.kent.ac.uk/ rej

Address: Richard Jones, Reader in Computer Systems,
Computing Laboratory,
University of Kent at Canterbury,
Canterbury CT2 7TNF, UK

Richard Jones is Reader in Computer Systems and Deputy Director of the Com-
puting Laboratory at the University of Kent, Canterbury. He leads the Systems
Research Group. He is best known for his work on garbage collection: his mono-
graph Garbage Collection remains the definitive book on the subject. His mem-
ory management research interests include techniques for avoiding space leaks,
scalable yet complete garbage collection for distributed systems, flexible tech-
niques for capturing traces of program behaviour, and heap visualisation. He
was made a Distinguished Scientist of the Association for Computer Machin-
ery (ACM) in 2006 and awarded an Honorary Fellowship at the University of
Glasgow in 2005.

Chandra KRINTZ, UC Santa Barbara, CA, USA.
Email: ckrintz@cs.ucsb.edu
Web: http://www.cs.ucsb.edu/ ckrintz

Address: University of California
Engineering I, Rm. 1121
Department of Computer Science
Santa Barbara, CA 93106-5110, USA

Chandra Krintz is an Assistant Professor at the University of California, Santa
Barbara (UCSB); she joined the UCSB faculty in 2001. Chandra’s research inter-
ests include automatic and adaptive compiler and virtual runtime techniques for
object-oriented languages that improve performance and increase battery life. In

54 O. Zendra et al.

particular, her work focuses on exploiting repeating patterns in the time-varying
behavior of underlying resources, applications, and workloads to guide dynamic
optimization and specialization of program and system components.

Philippe MULET, IBM, Saint-Nazaire, France.
Email: philippe_mulet@fr.ibm.com
Address: IBM France - Paris Laboratory
69, rue de la Vecquerie
44600 Saint-Nazaire, France

Philippe Mulet is the lead for the Java Development Tooling (JDT) Eclipse
subproject, working at IBM since 1996; he is currently located in Saint-Nazaire
(France). In late 1990s, Philippe was respounsible for the compiler and codeassist
tools in IBM Java Integrated Development Environments (IDEs): VisualAge for
Java standard and micro editions. Philippe then became in charge of the Java
infrastructure for the Eclipse platform, and more recently of the entire Java
tooling for Eclipse. Philippe is a member of the Eclipse Project PMC. Philippe
is also a member of the expert group on compiler API (JSR199), representing
IBM. His main interests are in compilation, performance, scalability and meta-
level architectures.

Jan VITEK, Purdue Univ., West Lafayette, IN, USA.
Email: jv@cs.purdue.edu
Web: http://www.cs.purdue.edu/homes/jv

Address: Dept. of Computer Sciences
Purdue University
West Lafayette, IN 47907, USA

Jan Vitek is an Associate Professor in Computer Science at Purdue Univer-
sity. He leads the Secure Software Systems lab. He obtained his PhD from the
University of Geneva in 1999, and a MSc from the University of Victoria in 1995.
Prof. Vitek research interests include programming language, virtual machines,
mobile code, software engineering and information security.

3 Participants

ICOOOLPS attendance was limited to 30 people for technical reasons. Unlike in
the 2006 edition, it was not mandatory for [ICOOOLPS 2007 to submit a paper to
participate. We indeed intended to further open the discussion by making the at-
tendance easier, and had learned from the numerous walk-ins during ICOOOLPS
2006. The 30-people limit was reached about 2 weeks before the workshop itself,
which lead us to put a note on the website to stop new registrations.

Finally, 27 people from 12 countries — up from 22 people from 8 countries
in 2006 — attended this second edition, which is an encouraging sign of an
increasing audience for ICOOOLPS. These attendants are listed in table [l

55

Implementation, Compilation, Optimization

Table 1. ICOOOLPS 2007 list of attendees

IJ BTIOTPRIPUSYZ ISTATTQ

npe *enpand - sopa
9q°0® " QNAPDWIDQUTIS

wod *xodtd " TeTppuUOSWOY] * pIRMOY
1d-npe-xd-yrotnpsdl

npe ' Wun * SOpo3[IeP

npe - Tun-osopkigTm

810 uoodsxeTpxeT

npe ‘uo8eion - sopsTUURA

oS sIowTRYD ‘ SopiTuUsetTad

I3 Fpopoulerd: rusane]

WOD * 90USPRIPOITOU

¥p’ne’ TWTepYUYIR]E

12 13depan0TIHOIN * oueydeas
AP NTPPOTIO

I3 eTIOTOPRNOYISSTIPI ' BURN
op ' UTTIOq-N] SOPXTSOT

¥ o€ DT 20PPGOTYL

op ‘wepsaod-tun- tdypaidney TorYdOTW
810 wasTqespuouldele

npe* ToNYZURIF

woo * TTewuSpITwy ' yeinyg

uo - 13depaeyooqnq - SSTTTH

yo - 1JdepsoSerp - uetInt

U0 8qTuUn " WeTpIousp

1T ° 0QTUNYSIOWRPRUTY) * OTZTINRY
woo *aT8008p1xeysTed

[reugy

QouRI]
vsn

wnideg
wopSuty] poru)
puejod

vsn

vsn
pUR[ISZIIMG
vsn

uopamg

QouRL

[oeIs]

rewuo (|
PUR[ISZIIMG
pRGETg)

QouRI]

Aueurior)
WOpPSUIy] payu()
Aueurior)
epeue))

vsn
PUR[ISZIIMG
pUR[ISZIIMG
pUR[ISZ}IMG
PUR[ISZIIMG
Aesn
PUR[ISZIIMG

Aryunoy)

VIHOT-VIUNI

“ATU() onpIng

[essnIg 1e)IsIoATu) SlTIA
[Punoy HNNMN

A3010UTD9], JO AJSIOATU[) MODRI))
ODIXOTA] MON JO AJSIOATU()
U[OOUIT - BYSRICDN JO AJSIOATU()
Tddd

w08a1() JO AYSIOATU() SIMODVADVHVINS

A3o[outa], Jo AJSIOATU) SISW[RY))
sy Add

Q0udpR))

snyry jo AYISIOATU ()

TddH

AMIAd

VI9OT / VIUNI

uteg-N.L

uopuor] ‘989[[0)) retredur]

wepsjoq "AIU() ‘INIISU-IOUIe[J-OSSeL]

WVON

@QTCH QD
Tddd
JdINVT - TAdH
Tddd

wIog] JO AJISIOAIq)
ruso[oq Ip eysoAtu() ‘SIHA
a[800n)

uoneIyY

VHANAZ IBIATO
SMALIA uef
INOWYHINLL ulng
NOSIWOH.L plremoy
DHINNZS uef
DIAONVAALS oxre(]
NV-VSI¥S SRMBITAN
NOOdS Iepuexely

EQQ@\W

ZLINSHIHd seaIpuy
ANOVId jusIne]
VIAVAO IRIN
NHASTHIN yoed swpuy
ANOTAHDIN oueydolg
nr OLIGY

AVNOV ISSIydl eURIN
LANNH ounsuy)

NH puowAey

LJdONVH [PRYDIN
NONDVD QU

ZNV YA PRI

HINA ey
IAHDOdNd SO[[ID)
SOOHVYd uerny
HIMNAA SnoTeIN
HIOWVAVINID OIZLIMe\[
HYAHITV addiryg
HINVN oureu 3sirg

56 O. Zendra et al.

4 Contributions

The presentations and discussions at ICOOOLPS 2007 were organized in 4 ses-
sions: annotations vs. no annotation, lookup and dispatch mechanisms, miscel-
laneous implementation issues and continuations and synchronizations.

Here are the main contributions for the sessions. More details (papers, pre-
sentations slides, etc.) are available from http://icooolps.loria.fr. They are
reported here in a lively an rather informal way, so as to keep some of the spon-
taneity of the workshop, with of course extra organization.

4.1 Annotations vs. No Annotation

This first technical session was a discussion-only one, chaired by Olivier Zendra,
who introduced it by a talk synthesizing the contributions of ICOOOLPS 2006
discussion "written down in code vs. inferred". It was a very lively and interesting
discussion, with a lot of attendees participating. Unfortunately, to respect the
schedule, we had to stop the discussion before it was over. This first indicates
this discussion topic is still open and should probably be continued in 2008, then
that discussion times should be even longer and/or more flexible.

A quote from last year stated that "Annotations are too serious to be left to
developers". But this triggers the question "And what about code 7!"

Some answers pointed that there is room for the compiler to do consistency
checking. Others argued it was better to let people do their own mistakes, since
that’s part of the learning process. It was objected that this reasoning, pushed to
the extreme, could lead to directly writing assembly code. Everyone agreed that
of course we still need higher level because we want people be more productive.

The issue was raised whether we actually needed different levels of annota-
tions. One level would we the "How-level", where we express how things are done.
This is very useful for optimization. Not so many people in the room considered
this level appealing to them, though. Another level would be the "What-level",
where we express properties (eg security) of the program, algorithms, ie. what
has to be done to some extent. Many people in the room considered this level
appealing to them.

But a flag was waived: annotations that change the meaning of a program
are just ... code ! So annotations should not change the semantic of a program,
otherwise we obtain a new language. Annotations, to remain genuine ones, should
be intrinsically optional: they should be hints. Annotations can be constraints.
They thus express domain-specific things and pertain to checking. However,
annotations should not grow so much as to have their own type system, otherwise
this makes the program much more complex.

A very interesting point was that we may need different hints, for different
uses, for different people (annotations for security, for speed optimization, for
?7) So one remarked that maybe they should stay outside the code of the program
itself. We could have source (code) files and annotations files, each pertaining to
a specific domain.

Implementation, Compilation, Optimization 57

But wouldn’t it be better to be able to modify the language easily (extension,
reflexivity...) 7 That could be an opening question for next year !

Reflexive annotations (with run-time changes) were mentioned, but the dis-
cussion did not go very far on this.

4.2 Lookup, Dispatch Mechanisms

The second session, chaired by Eric Jul, consisted of 2 paper presentations, one
insightful introductory talk by Eric on AbCons, and a discussion. This session
topic was a brand new one from this year.

The first paper, "One method at a time is quite a waste of time", by Andreas
Gal, Michael Bebenita and Michael Franz (University of California, Irvine, USA),
made a very convincing case that optimizing on a per method basis is not a good
granularity level. Instead their compiler optimizes on at the granularity of hot
traces, especially for loops.

The second paper, "Type feedback for bytecode interpreters", by Michael
Haupt, Robert Hirschfeld (Univ. of Potsdam, Germany) and Marcus Denker
(Univ. of Bern, Switzerland), explained the advantages pertaining to the use
of polymorphic inline caches (PICs) in interpreters, and some implementation
details in Squeak Smalltalk.

After these nice research works and the introduction on AbCons by Eric, the
discussion itself unfortunately did not really catch up, it seems. Things were
probably not mature enough. It is also possible that the attendees were not
concerned by this kind of implementation "details"... Maybe we could check this
for next year (survey 7). The timing — just before lunch — may also have had
an impact.

A few points of interest nonetheless emerged:

— Lookup can be implemented in many different ways.

— Lookup tends to increase memory size. This is not too good for caches, hence
performance.

— Similarly, lookup tends to increase register pressure, with again a negative
impact on performance.

— There was some discussion about the use of fat pointers, to reduce the cost
of lookup. Some participants argued that fat pointers are too expensive.

— Most calls can be solved statically, hence alleviating the need for (run-time)
lookup. Of course, this may imply whole system analysis, possibly at link
time.

4.3 Miscellaneous Implementation Issues

This third session, chaired by Eric Jul, begun the afternoon with three papers.

Titled "A Survey of Scratch-Pad Memory Management Techniques for low-
power and -energy", the first paper by Maha Idrissi Aouad (Univ. Henri-Poincaré,
Nancy, France) and Olivier Zendra (INRIA-LORIA, Nancy, France) presented
various existing SPM (scratch-pad memory) management techniques aimed at

58 O. Zendra et al.

low-power. It mostly focused on optimal placement of data according to existing
techniques and outlined unexplored directions.

The second paper, "Language and Runtime Implementation of Sessions for
Java" by Raymond Hu, Nobuko Yoshida (Imperial College, London, United
Kingdom) and Kohei Honda (Univ. of London, United Kingdom), explained how
session types could provide type-safe communications in Java. An implementa-
tion validating this was shown, with important protocol and communications
points detailed.

Finally, "Ensuring that User Defined Code does not See Uninitialized Fields"
by Anders Bach Nielsen (Univ. of Aarhus, Denmark) was the third and last
paper of this sessions. It discussed some of the problems and solutions found
in implementing gbeta, a generalization of the BETA language. This ongoing
work focused on a smart handling of object initialization so as to guarantee that
user code only uses fully initialized object, thus strengthening the type system
promises.

4.4 Continuations and Synchronizations

This fourth session of ICOOOLPS 2007 was chaired by Etienne Gagnon and
comprised one paper, one detailed presentation by Etienne on fat locks and
Java synchronization and a discussion. It continued ICOOOLPS 2006 unfinished
discussion about threads in Java.

The paper in this session was presented by Iulian Dragos (EPFL, Switzerland),
Antonio Cunei and Jan Vitek (Purdue Univ., USA). Titled "Continuations in
the Java Virtual Machine", it was an introduction to the nontrivial addition of
first-class continuation in a Java VM. It outlined the issues such an addition
raises, studying interactions with existing features of the Java language such as
exceptions, threads, security model and garbage collector.

After a very detailed and complete talk on "Keeping fat locks on a diet, eager
deadlock detection, and looking beyond the current Java synchronization model"
by Etienne, the discussion on "Java threads and synchronization model." took
place.

This was a follow-up and extension to last year’s discussion "Do (Java) threads
make sense ?". This topic sparked a lot of interest, unlike last year, which indi-
cates that the topic had somehow matured in participants minds.

The current statu quo is "rely on the developer" to express and manage
concurrency /synchronization. However, Java was about protecting programmers
from themselves. Is it really still the case with threads and synchronization as
done in Java ? Threads are not part of the language in Java, but the "synchro-
nized" keyword is. Shouldn’t they both be part of the language 7 The current
situation is somewhat unbalanced.

We then considered what was in the future. Cooperative synchronization ?
Synchronization is harder than GC (Garbage collection): indeed automating syn-
chronization is not possible, it is part of the semantics (which is not the case for
a GC’s work). Synchronization is akin to parallel programming. It’s an unsolved
problem. On a high level, writing a language that prevents deadlocks (or tells

Implementation, Compilation, Optimization 59

you there are none) would be great. But isn’t it like solving the halting problem ?
That’s not a promising path...

Once again, participants asked whether Java threads were really useful. In-
deed, threads and their synchronization seem very low level. But to go lower level
than Java, we have C... Shared memory and parallelism is ugly but convenient
for scientific programming.

The actual problem for developers is to express that they want to use paral-
lelism, not how. On a higher level, we have parallel programming, join, merge...

Would "actors" and asynchronous message sending be appropriate 7

Overall, the consensus seems to be that threads and synchronization in Java
is flawed, not at the appropriate level. Higher-level means should be provided to
express these concerns. Those who need lower-level or very fine control of things
should rely on going through C code.

5 Conclusion

This second edition of ICOOOLPS was a successful successor to ICOOOLPS
2006, where it had been decided ICOOOLPS should go on recurrently, on a
yearly basis. This year, we managed to increase the audience of ICOOOLPS,
gathering 27 people from 12 countries — up from 22 people from 8 countries in
2006 — from academia and industry, researcher as well as practitioners. This
clearly bides well for the future and the building of a small, informal, community.

A number of positive aspects can be mentioned about ICOOOLPS 2007.

First, this year, the workshop was officially open to anyone, not only au-
thors/speakers. This was coherent with the fact that an ECOOP workshop aims
at fostering discussions and exchanges, and the fact we had had many unregis-
tered (but welcome) walk-ins in 2006.

Thanks to our correct forecast for a larger attendance, this year the room allo-
cated by the ECOOP organizers was able to comfortably host all the
attendants.

The name tags for attendants were also a small but welcome improvement.

On a more scientific level, once again thanks to the skills of the speakers and
active participation of the attendants, the discussions were lively, open-minded
and allowed good exchanges. We had allocated more time for discussions than
last year, but it was barely enough.

Another encouraging aspect is that some discussions (annotations, Java
threads) recurred from 2006, which shows there is interesting work to be done
in these areas. Furthermore, the fact that the discussion on Java threads, which
did not caught up in 2006, was successful this year, indicates that some topics
are maturing.

As we had mentioned last year identifying the main challenges for optimiza-
tion is not that easy, if only because optimizations for object-oriented languages
come in variety of contexts with very different constraints (embedded, real-time,
dynamic, legacy...) hence different optimizations criteria (speed, size, memory
footprint, energy...). One thing that emerged more clearly in this second edition

60 O. Zendra et al.

is the fact that some of our concerns extend beyond object-oriented languages (to
functional languages, for example). Another important point is that to optimize,
it is difficult to consider separately implementation and language design, or at
least specifications. In this respect, the consensus we reached in the workshop
that threads and synchronization in Java are flawed and not at the appropriate
level is an interesting outcome.

6 Perspectives: ICOOOLPS Future

The perspectives for the ECOOP-ICOOOLPS workshop are very good. When
surveyed at the very end of the workshop, 16 attendees amongst the 18 still
present intended to come next year. We are thus very confident for ICOOOLSP
2008 to happen, in Cyprus.

Like every year, we try to draw lessons from each edition to further improve the
following ICOOOLPS editions. This year, we noted several aspects to improve,
amongst which the main ones are:

— This year, we had shorter presentations and longer discussions than in 2006.
That was good. But in 2008 we should devote even more time to discussions,
with even shorter presentations: the purpose of a workshop is not papers,
but brainstorming. Presentations should be 10 minutes max + 10 minutes
for questions.

— We must be very strict with presentations times, and not hesitate to stop a
speaker who’s exceeding her/his time.

— The papers do have to be available on the website before the workshop.

— Session report drafts should be written during a session (papers and talks)
and maybe briefly discussed at the end of each session (not after the work-
shop).

— Prior registration with the workshop organizers, like in ICOOOLPS 2006, is
better. It helps keeping track of attendants, gathering their topics of interest,
etc.

— We have to provide a list of suggested discussion topics at registration time,
so that attendees can vote for them (or suggest new ones). Having discussion
time open for topics suggested during the workshop did not work very well
in 2007.

Of course, some of these points put an increased burden on the organizers,
but are key to an even more successful and enjoyable workshop.

We also intend to selectively enlarge the audience to other — possibly non-
OO — communities who face the same kind of issues as the one we focus on in
ICOOOLPS.

7 Background

In order to provide a fixed access point for ICOOOLPS related matters, the
web site for the workshop is maintained at http://icooolps.loria.fr. All the
papers and presentations done for ICOOOLPS’2007 are freely available there.

Implementation, Compilation, Optimization 61

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Absar, M.J., Catthoor, F.: Compiler-based approach for exploiting scratch-pad in

presence of irregular array access. In: DATE, pp. 1162-1167 (2005)

. Amme, W., Dalton, N., Franz, M., von Ronne, J.: Safetsa: A type safe and refer-

entially secure mobile-code representation based on static single assignment form.
In: PLDI, pp. 137-147 (2001)

. Angiolini, E., Benini, L., Caprara, A.: Polynomial-time algorithm for on-chip

scratchpad memory partitioning. In: CASES (2003)

. Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P.F.: Adaptive optimization

in the jalapeno jvm. In: OOPSLA, pp. 47-65 (2000)

. Arnold, M., Fink, S.J., Grove, D., Hind, M., Sweeney, P.F.: A survey of adaptive

optimization in virtual machines. Proceedings of the IEEE 93(2), 449-466 (2005)

. Athavale, R., Vijaykrishnan, N., Kandemir, M.T., Irwin, M.J.: Influence of array

allocation mechanisms on memory system energy. In: IPDPS, p. 3 (2001)

. Avissar, O., Barua, R., Stewart, D.: An optimal memory allocation scheme for

scratch-pad-based embedded systems. Transaction on Embedded Computing Sys-
tems 1(1), 6-26 (2002)

. Bacon, D.F., Cheng, P., Rajan, V.T.: A real-time garbage collector with low over-

head and consistent utilization. In: POPL, pp. 285-298 (2003)

. Bacon, D.F., Konuru, R.B., Murthy, C., Serrano, M.J.: Thin locks: Featherweight

synchronization for java. In: PLDI, pp. 258-268 (1998)

Banakar, R., Steinke, S., Lee, B.-S., Balakrishnan, M., Marwedel, P.: Scratchpad
memory: design alternative for cache on-chip memory in embedded systems. In:
CODES, pp. 73-78. ACM Press, New York (2002)

Baynes, K., Collins, C., Fiterman, E., Ganesh, B., Kohout, P., Smit, C., Zhang, T.,
Jacob, B.: The performance and energy consumption of three embedded real-time
operating systems. In: CASES 2001. 4th Workshop on Compiler and Architecture
Support for Embedded Systems, pp. 203-210 (2001)

Beers, M.Q., Stork, C., Franz, M.: Efficiently verifiable escape analysis. In: Odersky,
M. (ed.) ECOOP 2004. LNCS, vol. 3086, Springer, Heidelberg (2004)

Benini, L., Macii, A., Macii, E., Poncino, M.: Increasing Energy Efficiency of Em-
bedded Systems by Application Specific Memory Hierarchy Generation. IEEE De-
sign and Test 17(2), 74-85 (2000)

Benini, L., De Micheli, G.: System-level power optimization: techniques and tools.
IEEE Design and Test 17(2), 74-85 (2000)

Blackburn, S., Jones, R., McKinley, K.S., Moss, J.E.B.: Beltway: Getting around
garbage collection gridlock. In: PLDI, pp. 153-164 (2002)

Blackburn, S.M., Cheng, P., McKinley, K.S.: Oil and water? high performance
garbage collection in java with mmtk. In: ICSE, pp. 137-146 (2004)

Blanchet, B.: Escape analysis for java!™: Theory and practice. ACM Trans. Pro-
gram. Lang. Syst. 25(6), 713775 (2003)

Bollella, G., Gosling, J.: The real-time specification for java. IEEE Computer 33(6),
47-54 (2000)

Bruggeman, C., Waddell, O., Dybvig, R.K.: Representing control in the presence
of one-shot continuations. In: PLDI, pp. 99-107 (1996)

Chambers, C., Ungar, D., Lee, E.: An efficient implementation of self a dynamically-
typed object-oriented language based on prototypes. In: OOPSLA, pp. 49-70
(1989)

62

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

O. Zendra et al.

Cherem, S., Rugina, R.: Region analysis and transformation for java programs. In:
ISMM, pp. 85-96 (2004)

Cofer, D.D., Rangarajan, M.: Formal modeling and analysis of advanced scheduling
features in an avionics rtos. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.)
EMSOFT 2002. LNCS, vol. 2491, pp. 138-152. Springer, Heidelberg (2002)
Colnet, D., Coucaud, P., Zendra, O.: Compiler support to customize the mark and
sweep algorithm. In: ISMM, pp. 154-165 (1998)

Delaluz, V., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Sivasubramaniam, A.,
Kolcu, I.: Compiler-directed array interleaving for reducing energy in multi-bank
memories. In: ASP-DAC 2002. 2002 conference on Asia South Pacific design au-
tomation/VLSI Design, p. 288. IEEE Computer Society Press, Los Alamitos (2002)
Deters, M., Cytron, R.: Automated discovery of scoped memory regions for real-
time java. In: MSP/ISMM, pp. 132-142 (2002)

Detlefs, D.: A hard look at hard real-time garbage collection. In: ISORC, pp. 23-32
(2004)

Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328-352. Springer, Heidelberg (2006)

Dominguez, A., Udayakumaran, S., Barua, R.: Heap data allocation to scratch-
pad memory in embedded systems. Journal of Embedded Computing (JEC) 1(4)
(2005)

Dwyer, M.B., Hatcliff, J.R., Ranganath, V.P.: Exploiting object escape and locking
information in partial-order reductions for concurrent object-oriented programs.
Formal Methods in System Design 25(2-3), 199-240 (2004)

Egger, B., Lee, J., Shin, H.: Scratchpad Memory Management for Portable Systems
with a Memory Management Unit. In: EMSOFT (2006)

Ernst, E.: Family polymorphism. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 303-326. Springer, Heidelberg (2001)

Fitzgerald, R.P., Tarditi, D.: The case for profile-directed selection of garbage col-
lectors. In: ISMM, pp. 111-120 (2000)

Ben Fradj, H., El Ouardighi, A., Belleudy, C., Auguin, M.: Energy aware memory
architecture configuration. 33(3), 3-9 (2005)

Gagnon, E.M., Hendren, L.J.: Sablevm: A research framework for the efficient
execution of java bytecode. In: Java Virtual Machine Research and Technology
Symposium, pp. 27-40 (2001)

Graybill, R., Melhem, R.: Power aware computing. Kluwer Academic Publishers,
Norwell (2002)

Grove, D., Chambers, C.: A framework for call graph construction algorithms.
ACM Trans. Program. Lang. Syst. 23(6), 685-746 (2001)

Hall, R.S.: A policy-driven class loader to support deployment in extensible frame-
works. In: Component Deployment, pp. 81-96 (2004)

Hallnor, G., Reinhardt, S.K.: A fully associative software-managed cache design.
In: ISCA (2000)

Harris, T.L.: Dynamic adaptive pre-tenuring. In: ISMM, pp. 127-136 (2000)
Higuera-Toledano, M.T., Issarny, V., Banatre, M., Cabillic, G., Lesot, J.-P., Parain,
F.: Region-based memory management for real-time java. In: ISORC, pp. 387-394
(2001)

Hirzel, M., Diwan, A., Hertz, M.: Connectivity-based garbage collection. In: OOP-
SLA, pp. 359-373 (2003)

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Implementation, Compilation, Optimization 63

Hiser, J.D., Davidson, J.W.: EMBARC: An Efficient Memory Bank Assignment
Algorithm for Retargetable Compilers. In: LCTES, pp. 182-191. ACM Press, New
York (2004)

Holzle, U., Ungar, D.: Optimizing dynamically-dispatched calls with run-time type
feedback. In: PLDI, pp. 326-336 (1994)

Hom, J., Kremer, U.: Inter-program optimizations for conserving disk energy. In:
ISLPED, pp. 335-338. ACM Press, New York (2005)

Jones, R., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic Mem-
ory Management. Wiley, Chichester (1996)

Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Ye, W., Demirkiran, I.: Register
relabeling: A post compilation technique for energy reduction. In: COLP (October
2000)

Krintz, C., Calder, B.: Using annotation to reduce dynamic optimization time. In:
PLDI, pp. 156-167 (2001)

LCTES. Compilation Challenges for Network Processors. In: Compilers and Tools
for Embedded Systems. Industrial Panel, ACM Conference on Languages (June
2003)

Lee, M., Tiwari, V., Malik, S., Fujita, M.: Power analysis and minimization tech-
niques for embedded dsp software. IEEE Transactions on Very Large Scale Inte-
gration, 5 (March 1997)

Moreau, P.-E., Zendra, O.: GC?: a generational conservative garbage collector for
the ATterm library. J. Log. Algebr. Program. 59(1-2), 5-34 (2004)

Muchnick., S.S. (ed.): Advanced compiler design and implementation. Morgan
Kaufmann Publishers Inc., San Francisco (1997)

Nagpurkar, P., Krintz, C., Hind, M., Sweeney, P.F., Rajan, V.T.: Online phase
detection algorithms. In: CGO, pp. 111-123 (2006)

Necula., G.C.: Proof-carrying code. In: POPL, pp. 106-119 (1997)

Nguyen, N., Dominguez, A., Barua, R.: Memory allocation for embedded systems
with a compile-time-unknown scratch-pad size. In: CASES (2005)

Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-
work for java. In: CC (2003)

Palacz, K., Vitek, J.: Java subtype tests in real-time. In: Cardelli, L. (ed.) ECOOP
2003. LNCS, vol. 2743, pp. 378-404. Springer, Heidelberg (2003)

Panda, P.R., Dutt, N., Nicolau, A.: Efficient utilization of scratch-pad memory in
embedded processor applications. In: DATE (1997)

Pizlo, F., Fox, J.M., Holmes, D., Vitek, J.: Real-time java scoped memory: Design
patterns and semantics. In: ISORC, pp. 101-110 (2004)

Poletti, F., Marchal, P., Atienza, D., Benini, L., Catthoor, F., Mendias, J.M.: An
integrated hardware/software approach for run-time scratchpad management. In:
DAC, pp. 238-243 (2004)

Privat, J., Ducournau, R.: Link-time static analysis for efficient separate compila-
tion of object-oriented languages. In: PASTE, pp. 20-27 (2005)

Ravindran, R.A., Senger, R.M., Marsman, E.D., Dasika, G.S., Guthaus, M.R.,
Mabhlke, S.A., Brown, R.B.: Partitioning variables across register windows to reduce
spill code in a low-power processor. IEEE Transaction on Computers 54(8), 998
1012 (2005)

Reynolds, J.C.: The discoveries of continuations. Lisp Symb. Comput. 6(3-4), 233~
248 (1993)

Siebert., F.: Hard real-time garbage-collection in the jamaica virtual machine. In:
RTCSA, pp. 96-102 (1999)

64

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

O. Zendra et al.

Soman, S.,; Krintz, C., Bacon, D.F.: Dynamic selection of application-specific
garbage collectors. In: ISMM, pp. 49-60 (2004)

Steinke, S., Grunwald, N., Wehmeyer, L., Banakar, R., Balakrishnan, M., Mar-
wedel, P.: Reducing Energy Consumption by Dynamic Copying of Instructions
onto Onchip Memory. In: ISSS (2002)

Steinke, S., Knauer, M., Wehmeyer, L., Marwedel, P.: An accurate and fine grain
instruction-level energy model supporting software optimizations. In: Proc. of PAT-
MOS (2001)

Suganuma, T., Yasue, T., Nakatani, T.: A region-based compilation technique for
a java just-in-time compiler. In: PLDI, pp. 312-323. ACM Press, New York (2003)
Tallam, S., Gupta, R.: Bitwidth aware global register allocation. In: POPL, pp.
85-96 (2003)

Tofte, M., Talpin, J.-P.: Region-based memory management. Inf. Comput. 132(2),
109-176 (1997)

Udayakumaran, S., Dominguez, A., Barua, R.: Dynamic allocation for scratch-
pad memory using compile-time decisions. Embedded Comput. Syst. 5(2), 472-511
(2006)

Verma, M., Wehmeyer, L., Pyka, R., Marwedel, P., Benini, L.: Compilation and
Simulation Tool Chain for Memory Aware Energy Optimizations. In: Vassiliadis,
S., Wong, S., Himéliinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 279-288.
Springer, Heidelberg (2006)

Whaley, J., Rinard, M.C.: Compositional pointer and escape analysis for java pro-
grams. In: OOPSLA, pp. 187-206 (1999)

Woo, S., Yoon, J., Kim, J.: Low-power instruction encoding techniques. In: SOC
Design Conference (2001)

Xie, F., Martonosi, M., Malik, S.: Intraprogram dynamic voltage scaling: Bounding
opportunities with analytic modeling. ACM Transactions on Architure and Code
Optimization (TACO) 1(3), 323-367 (2004)

Zendra, O., Driesen, K.: Stress-testing control structures for dynamic dispatch in
java. In: Java Virtual Machine Research and Technology Symposium, pp. 105-118
(2002)

Zhang, Y., Gupta, R.: Data compression transformations for dynamically allocated
data structures. In: Horspool, R.N. (ed.) CC 2002 at ETAPS 2002. LNCS, vol. 2304,
pp. 14-28. Springer, Heidelberg (2002)

Zhuang, X., Lau, C., Pande, S.: Storage assignment optimizations through variable
coalescence for embedded processors. In: LCTES, pp. 220-231. ACM Press, New
York (2003)

Models and Aspects -
Handling Crosscutting Concerns in MDSD
Report on the Workshop MA’07 at ECOOP 2007

Andrew Jackson', Iris Groher?, Christa Schwanninger?, and Markus Vélter?

! Distributed Systems Group, Department of Computer Science,
Trinity College, Dublin 2, Ireland
anjackson@cs.tcd.ie
2 Siemens AG, Corporate Technology, Munich, Germany
{iris.groher.ext,christa.schwanninger}@siemens.com
3 Independent Consultant, Heidenheim, Germany
voelter@acm.org

Abstract. This report summarizes the presentations and discussions of
the Third Workshop on Models and Aspects Handling Crosscutting Con-
cerns in MDSD, held in conjunction with the 21st European Conference
on Object-Oriented Programming (ECOOP) in Berlin, Germany on July,
31, 2007. This workshop was motivated by the fact that both Model-
Driven Software Development (MDSD) and Aspect-Oriented Software
Development (AOSD) are important new paradigms that both promise
to change the way software is developed. Both approaches provide op-
portunities for concern separation. AOSD separates concerns horizontally
and MDSD enables concern separation vertically. This workshop identi-
fied two key integration strategies to achieve the complementary bene-
fits of both aspect-oriented and model-driven development. The first is
the use of aspects within transformation languages to separate transfor-
mational concerns making model transformations easier to write. The
second is the separation of concerns within models defined as aspects.
This workshop established the key benefits of these. The major benefit
of the first is easing the complexity of development and maintainability
of transformations. The major benefit of the second is means to reduce
the problems associated with aspects, such as, aspect interactions, fragile
pointcuts and understandability.

1 Introduction

Model-Driven Software Development (MDSD) and Aspect-Oriented Software
Development (AOSD) are important new paradigms that both promise to change
the way software is developed. Both approaches provide opportunities for concern
separation. AOSD separates concerns horizontally and MDSD enables concern
separation vertically. Although the benefits of AOSD and MDSD are clear, the
benefits of their integration into one paradigm remain ambiguous and prone to
mis-interpretation. These benefits are unclear because the key integration strate-
gies for combining these paradigms are unclear.

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 65 2008.
© Springer-Verlag Berlin Heidelberg 2008

66 A. Jackson et al.

This ambiguity is the product of two distinct communities overlapping with their
goals, outlooks and experiences. The goals of the AOSD community are to reduce
the problems associated with aspects. These problems include the aspect interac-
tion issue, fragile pointcut problem and problems related to the understandability
of systems decomposed into aspect modules. The goals of the MDSD community
are to improve the ease with which model transformations are written.

This workshop identified two key integration strategies to achieve the com-
plementary benefits of both aspect-oriented and model-driven development. The
first is the use of aspects within transformation languages to separate transfor-
mational concerns, making model transformations easier to write. The second is
the separation of crosscutting concerns within models defined as aspects. This
workshop established the key benefits of these. The major benefit of the first
is easing the complexity of development and maintainability of transformations.
The major benefit of the second is the reduction of evolutionary problems related
to composition, more commonly referred to as pointcut fragility.

The remainder of this report is structured as follows. In Section 2 a synopsis of
each paper is provided. In Section 3 we list the questions that were tackled in the
workshop. In Section 4 we list the participants of the workshop. In Section 5, we
characterise and report on the discussion that took place during the workshop.
Our conclusions from the workshop are presented in Section 6.

2 Synopsis of Accepted Papers

In this section we present a synopsis of each submitted paper. Typically, we have
based this synopsis on abstracts from each paper and where papers did not have
abstracts we have provided suitable text. These papers are available on the work-
shop website http://www.kircher-schwanninger.de /workshops/MDD&AOSD/.

2.1 Using Aspect Oriented Modeling to Localize Implementation of
Executable Models [1]

Executable models are essential to define the behavior of models, such as con-
straints put on model elements. However their implementation crosscut multi-
ple model elements. Model semantics will facilitate Model Driven Development,
without it, Design and Implementation won’t necessarily represent different ab-
stractions of the same system. This paper introduces a mechanism to query exe-
cutable models and weave constraints in order to localize their implementation,
which improves code redundancy and modularity.

2.2 Interests and Drawbacks of AOSD Compared to MDE a
Position Paper [3]

Separation of concern is an essential design process. Two challenges are how to
describe a concern and how apply it? The aspect approach makes the choice to
offer an universal, generic, mechanism of weaving and requires that the concern

Models and Aspects - Handling Crosscutting Concerns in MDSD 67

designer adopt it and expresses concerns knowing this universal mechanism. All
the flexibility is in the concern description. On the contrary, the model driven
approach offers more flexibility. In fact, the concern designers decides first the
way he describes the concern, selecting a concern meta-model, and after, elab-
orates a transformation that injects concerns into the base model. No universal
merging (weaving) transformation is required. Every transformation is tailored.
We argue the MDE approach can be used to separate concerns in a more flexible
way that the usual AOP does. Transformations implement automatized steps of
the design process. Parts of this process are related to the woven concern and,
hence, can be implemented thanks to model transformations. We also argue that
concerns must be selected, analyzed, specified, modeled prior to their weaving
process. The concern model influence the weaving transformation, but the im-
plementability of the transformation may also influence the concern model. This
is why the flexibility offered by MDE is so important.

2.3 Identification of Crosscutting Concerns in Constraint-Driven
Validated Model Transformations [4]

Domain-specific model processors facilitate the efficient synthesis of application
programs from software models. Often, model compilers are realized by graph
rewriting-based model transformation. In Visual Modeling and Transformation
System (VMTS), metamodel-based rewriting rules facilitate to assign Object
Constraint Language (OCL) constraints to model transformation rules. This
approach supports validated model transformation. Unfortunately, the valida-
tion introduces a new concern that often crosscuts the functional concern of the
transformation rules. To separate these concerns, an aspect-oriented solution
is applied for constraint management. This paper introduces the identification
method of the crosscutting constraints in metamodel-based model transforma-
tion rules. The presented algorithms make both the constraints and the rewrit-
ing rules reusable, furthermore, supports the better understanding of model
transformations.

2.4 Towards a Generic Aspect-Oriented Modeling Framework [5]

Aspect Oriented Modelling approaches propose to model reusable aspects, or
crosscutting concerns, that can be later on composed into various base systems.
These approaches are often limited to a particular domain: UML Class diagrams,
UML Sequence diagrams and therefore they cannot be easily adapted to other
domains. In this paper the authors propose to extend the notion of aspects to
encompass an open ended number of domains. They present a Generic Aspect
Oriented Modeling Framework and show how it can easily be specialised for any
specific domain.

2.5 Towards a Run-Time Model Based on Colored Petri-nets for
the Execution of Model Transformations [6]

Existing model transformation languages, which range from purely imperative
to fully declarative approaches, have the advantage of either explicitly providing

68 A. Jackson et al.

statefulness and the ability to define control flow, or offering a raised level of ab-
straction through automatic rule ordering and application. Existing approaches
trying to combine the strengths of both paradigms do so on the language level,
only, without considering the benefits of integrating imperative and declarative
paradigms in the underlying execution model. Hence, this paper proposes a trans-
formation execution model based on colored Petri-nets, which allows to combine
the statefulness of imperative approaches as well the raised level of abstraction
from declarative approaches. Furthermore, we show how a Petri-net based exe-
cution model lends itself naturally to the integration of an aspect-oriented style
of transformation definition, as transformation rules can be triggered not only
upon the input model, but on the state of the transformation execution itself.

2.6 Improving Traceability through AOSD [7]

Tracing artefacts throughout the whole development process is a key issue in
industry, driven by internal and external forces. Handling variability and docu-
menting decisions on variations is the core issue of traceability. AOSD approaches
introduce interesting concepts to modularise cross-cutting concerns at various de-
velopment stages but it also complicates traceability. Explicit aspect interfaces
are one requirement for easier tracking of dependencies between AO and non-
AO artefacts. In the paper the authors share their industry perspective on how
AOSD and MDSD could further fertilise each other for improving traceability
issues, among other challenges.

2.7 Reducing Aspect-Base Coupling through Model Refinement [8]

Aspect-Oriented Programming languages allow pointcut descriptors to quantify
over the implementation points of a system. Such pointcuts are problematic
with respect to independent development because they introduce strong mutual
coupling between base modules and aspects. This position paper addresses the
aspect-base coupling problem by defining pointcut descriptors in terms of ab-
stract views of the base module. These abstract views should be towards the
architectural viewpoints of the system under development.

3 Workshop Questions Tackled

The aim of this workshop was to explore issues for new approaches to using
Model-Driven and Aspect-Oriented Software Development together. We invited
researchers and practitioners to present their approaches and discuss the rele-
vance for practical software development. Seven papers, summarised in Section 2,
were accepted in total. These papers raised the following questions:

1. Does AOSD improve traceability? [7I3I5II]
2. What is the relationship between traceability and the fragile pointcut prob-
lem in AOSD? [SI3I5]

Models and Aspects - Handling Crosscutting Concerns in MDSD 69

3. Can the use of models and aspects reduce coupling issues between aspects?

[81355]
4. Is MDSD more flexible than AOSD and does this flexibility make AOSD

redundant? [3lJ516]
5. Should model transformations and aspects be combined? [41613]
6. What kinds of crosscutting concerns exist in model transformations? [4I6l3]

4 Participants

The following people participated in the workshop:

— Iris Groher, PhD student at Siemens AG, Corporate Technology, Munich,
Germany, iris.groher.ext@siemens.com

— Andrew Jackson, PhD student at the Distributed Systems Group, Trinity
College Dublin, Ireland, anjackso@cs.tcd.ie

— Thomas Reiter, PhD student, University of Linz, Austria, reiter@bioinf.jku.at

— Benoit Baudry, IRISA /INRIA, Rennes, France, Benoit.Baudry@Qirisa.fr

— Katharina Mehner, Siemens AG, Munich, Germany,
katharina.mehner@siemens.com

— Birgit Grammel, SAP AG, Dresden, Germany, birgit.grammel@sap.com

— Meir Ovadin, Cadence, meiro@Qcadence.com

— Wilfried Rupflin, University of Dortmund,
wilfried.rupflin@cs.uni-dortmund.de

— Laszlo Lengyel, BUTE DAALI, lengyel@aut.bme.hu

— Antoine Beugnard, ENST-Bretagne, Antoine.beugnard@enst-bretagne.fr

— Florian Heidenreich, Technical University Dresden,
florian.heidenreich@tu-dresden.de

— Piotr Jacak, Technical University Berlin, jacak@cs.tu-berlin.de

— Gerti Kappel, Technical University Vienna, gerti@big.tuwien.ac.at

— Linda Badri, UQTR, linda.badri@uqtr.ca

— Mourad Babei, UQTR, mourad.babei@uqtr.ca

— Zaid Altahat, IIT, zaid.altahat@ge.com

— Awais Rashid, University of Lancaster, marash@comp.lancs.ac.uk

— Nelly Bencomo, University of Lancaster, nelly@acm.org

— Marco Mosconi, Technical University Berlin, mosconi@cs.tu-berlin.de

— Aswin v. d. Berg, Motorola Labs, aswin.vandenberg@mot.com

5 Discussion

Following in the footsteps of the previous Models and Aspects workshops held
at ECOOP the enduring debate over what the core benefits are of using Aspect-
Oriented Software Development in conjunction with Model-Driven Software De-
velopment. The value of model driven software development was firstly discussed.
In this discussion we agreed that the expected benefit of MDSD is that it raises
the level of abstraction in software development. Unlike previous instances of this

70 A. Jackson et al.

workshop, participants’ opinions varied on the most significant benefits of the in-
tegration of these complementary approaches to software development. The list
of benefits previously considered in this workshop series included maintainability,
extensibility, reusability, testability, comprehensibility, scalability, traceability,
parallel development and reduced complexity [2]. In contrast, in this installment
of the workshop showed a dramatic narrowing of the benefits expected from
combining models and aspects. This narrowing has separated the benefits along
community lines (the Aspect Oriented Modeling (AOM community and Model
Transformation (MODELS) community E) Through this workshop it quickly be-
came apparent that the AOM community was looking towards models to reduce
some of the know problems associated with aspects. The MODELS community
in contrast was looking toward aspects to ease with which model transforma-
tions can be developed, reused and maintained. To facilitate focused discussion
for both communities the discussion was separated along these lines.

5.1 Discussion 1: Models to Reduce Problems with Aspects

Andrew Jackson led this discussion and Aswin van den Berg, Birgit Grammel and
Zaid Altahat were among the main discussion participants. In this discussion we
firstly investigated the idea that traceability was a major benefit when combining
aspects and models. The idea here was a more direct alignment between require-
ments, architecture, design and implementation that aspects in a model-driven
environment when AOSD is employed across the development life cycle.

Through our discussion it became clear from experiences and insights within
the group that although following an AOSD decomposition would improve the
alignment of artifacts in a model-driven approach, it would not improve trace-
ability. The consensus was that traceability would just be between different ar-
tifacts and this would not be a marked improvement over other approaches to
decomposition. It was agreed that strong traceability should be a side effect of
model transformation regardless of decomposition. This discussion dealt with
question one defined in Section 2.

With this misconception fully laid to rest we then turned to questions two
and three. These questions focused on the ability to use models to reduce cou-
pling between aspects at the code level. The idea forwarded was that by having
higher-level representations of aspects the coupling between these models is re-
duced. The reduction in coupling is due to the fact that composition at higher
levels of abstractions is based on the model semantics rather than syntax based
composition at lower levels of abstraction.

This move from syntactic to semantic composition mechanisms is an attempt
to reduce the negative implications of the fragile pointcut problem. The fragile
pointcut problem arises where syntax based composition is employed in develop-
ment. Pointcut fragility is a byproduct of evolution. Syntax based pointcuts are
dependent on the structures and control flow of the elements being composed.

! http://www.aspect-modeling.org/
2 http://www.model-transformation.org/

Models and Aspects - Handling Crosscutting Concerns in MDSD 71

When these structures change this can cause the composition specified by point-
cuts to become incorrect. This incorrect composition in turn can then cause the
composed software product to be faulty.

To facilitate this move from syntactic to semantic composition the group
discussed the possibility of employing a model-driven approach whereby com-
position is semantically defined between software models and these models are
used to automatically generate corresponding syntactic realizations of this at
the code level. It was acknowledged by the group that the automated genera-
tion of code would produce a skeletal realization of the model which could be
embellished by developers where deemed necessary. Allowing embellishment of
the generated code can be problematic. The group identified that embellishment
causes issues with regeneration from the a changed model. If the model has been
embellished and the model that from which the embellished code changes then
there is a problem as embellishments may become lost, incorrect or inappropri-
ate when the changed model is regenerated. There is the an associated cost with
refactoring the embellishments to ensure the efforts invested in embellishments
are not wasted. If the embellished code changes outside the scope of the model
then there is a problem of reverse engineering these changes into the model.

Towards the end of this discussion the group reflected on these problems and
agreed that round-trip engineering was needed in an Aspect-Oriented Model-
Driven approach to software development. Based on our original discussion we
conceded that one way to provide round trip engineering in such an approach
was by ensuring strong traceability between higher and lower levels of abstrac-
tion. From this changes at either level can be more easily propagated between
the various levels of abstraction. Through the combination of a model-driven
approach, aspect-orientation and round trip engineering the maintainability of
the resulting software is expected to be increased.

Our discussion ended by noting that round trip engineering is a complex task
that requires an excellent level of tooling to be employed practically at all. We
also noted that the benefits of integration of models and aspects requires many
more empirical studies at the model level to quantify the true benefits of aspects
and models.

5.2 Discussion 2: Aspects in Transformations

Iris Groher led this discussion. In the discussion we first talked about if we
should combine model transformations and aspects at all. Some participants
were of the opinion that model transformations are very complex in general and
aspects could further complicate them. Also, the question was raised if we al-
ready know enough about model transformations that we are able to judge what
kinds of crosscutting concerns exist in transformations. We agreed that might
first have to get a better understanding of transformations and then identify
typical crosscutting concerns (CCCs). Experts in the domain of transformations
might already know some typical CCCs. Testing is one of the unsolved issues
in transformations in general and in AO transformations in particular. We then
discussed the issue of development aspects vs. production aspects. Development

72 A. Jackson et al.

aspects such as tracing or logging could be added as features of the transfor-
mation language to ease the life of transformation developers. Developers can
make use of those aspects if they like, similar to the separation of several (mostly
non-functional) concerns in component containers.

Another discussion point was how much is actually influenced by the trans-
formation language itself. The question raised was: Depending on the type of
transformation language, might there be a need for aspects or not? This ques-
tion led us to the idea of domain specific transformation languages. As some
participants raised the issue of constraints being potential CCCs on transforma-
tion level, some domain constraints could already be built in a domain specific
transformation language.

We also talked about how aspects on transformation level could look like at
all. Are they more then just macro expansion or process interception? It was
agreed that only the fact that transformation steps are repeated does not make
them crosscutting. Also, participants agreed that the transformation should
make sense without the aspect and should be able to be executed without the
aspect being applied to it.

The last point we discussed about are software product lines. The transfor-
mation language Xtend provides support for aspects (as part of openArchitec-
tureWare 4.2) which has successfully been applied in product line development.
Here, features were expressed on model level. The feature dependent parts of
the transformation were separated as aspects. We all agreed that this might be
a very useful application of aspects on transformation level.

The following example shows what Xtend aspects look like. The function Inter-
face2Service transforms an interface into a service. The advice shown below advises
the function. The advice is a before advice, ctx.proceed() calls the original function.

create Service Interface2Service (Interface intf) :

setName (intf.name) -> setOperations ((List)intf.operations.clone());
around Interface2Service (Interface intf) :

ctz.proceed() -> ... do additional stuff ;

AO on model transformation level also brings in the opportunity of defin-
ing variants of model transformers. By doing so, families of transformers can
be created. Aspects applied to transformation functions can change the actual
behavior of transformations. In general it was agreed that good tool support
is vital for model transformation in general and AO model transformations in
particular. It is clear that aspects can make the transformation work-flow harder
to understand. openArchitectureWare 4.2 for example provides a debugger for
transformations that is also able to debug transformation aspects.

6 Conclusions

This workshop was highly successful. Participants were highly involved and in-
teresting debates raged all day, chaperoned and guided by the organisers. The
questions that were tackled arose from the papers that were accepted.

Models and Aspects - Handling Crosscutting Concerns in MDSD 73

One conclusion of the first discussion (Section 5.1) was that one way that
models and aspects can be used together is to use models to raise the level of
abstraction to a semantic level where the fragile pointcut problem is overcome.
Another outcome from that discussion was the identification of particular falla-
cies about traceability. We concluded that traceability is not improved through
the combination of models and aspects.

In the second discussion (Section 5.2) it was agreed that good tool support
is vital for model transformation in general and AO model transformations in
particular. It also was concluded that aspects can make the transformation work-
flow harder to understand.

A final conclusion of the workshop is that more work need to be done to reveal
and fully quantify what the main benefits of integrated AOSD-MDSD are; this
integration may be at too early stage of research to really identify what needs
to be done in the future and current tooling needs to be extended to support
integrated AOSD-MDSD approaches.

Acknowledgements

This workshop is supported by European Commission grant IST-2-004349: Euro-
pean Network of Excellence on Aspect-Oriented Software Development (AOSD-
Europe), 2004-2008.

References

1. Altahat, Z., Elrad, T., Vojtisek, D.: Using aspect oriented modeling to localize imple-
mentation of executable models. In: Proceedings of the Third Workshop on Models
and Aspects, Handling Crosscutting Concerns in MDSD at the 21st European Confer-
ence on Object-Oriented Programming, Berlin, Germany, pp. 3-7 (2007) (Forschungs-
berichte der Fakultit IV, Elektrotechnik und Informatik, Bericht Nr. 6, 2007)

2. Groher, 1., Jackson, A., Volter, M., Schwanniger, C.: Models and aspects, handling
crosscutting concerns in mdsd. In: Siidholt, M., Consel, C. (eds.) ECOOP 2006 Ws.
LNCS, vol. 4379, pp. 21-25. Springer, Heidelberg (2007)

3. Kabore, C.E., Beugnard, A.: Interests and drawbacks of aosd compared to mde a
position paper. In: Proceedings of the Third Workshop on Models and Aspects, Han-
dling Crosscutting Concerns in MDSD at the 21st European Conference on Object-
Oriented Programming, Berlin, Germany, pp. 1-2 (2007) (Forschungsberichte der
Fakultat IV, Elektrotechnik und Informatik, Bericht Nr. 6, 2007)

4. Lengyel, L., Levendovszky, T., Charaf, H.: Identification of crosscutting concerns
in constraint-driven validated model transformations. In: Proceedings of the Third
Workshop on Models and Aspects, Handling Crosscutting Concerns in MDSD at the
21st European Conference on Object-Oriented Programming, Berlin, Germany, pp.
13-18 (2007) (Forschungsberichte der Fakultidt IV, Elektrotechnik und Informatik,
Bericht Nr. 6, 2007)

5. Morin, B., Barais, O., Jezequel, J.-M., Ramos, R.: Towards a generic aspect-oriented
modeling framework. In: Proceedings of the Third Workshop on Models and As-
pects, Handling Crosscutting Concerns in MDSD at the 21st European Conference
on Object-Oriented Programming, Berlin, Germany, pp. 25-29 (2007) (Forschungs-
berichte der Fakultat IV, Elektrotechnik und Informatik, Bericht Nr. 2007, 6)

74

A. Jackson et al.

. Reiter, T., Wimmer, M., Kargl, H.: Towards a runtime model based on colored

petri-nets for the execution of model transformations. In: Proceedings of the Third
Workshop on Models and Aspects, Handling Crosscutting Concerns in MDSD at the
21st European Conference on Object-Oriented Programming, Berlin, Germany, pp.
19-23 (2007) (Forschungsberichte der Fakultiat IV, Elektrotechnik und Informatik,
Bericht Nr. 6, 2007)

. Rummler, A., Pohl, C.,; Grammel, B.: Improving traceability through aosd. In: Pro-

ceedings of the Third Workshop on Models and Aspects, Handling Crosscutting
Concerns in MDSD at the 21st European Conference on Object-Oriented Program-
ming, Berlin, Germany, pp. 9-10 (2007) (Forschungsberichte der Fakultit IV, Elek-
trotechnik und Informatik, Bericht Nr. 6, 2007)

. van den Berg, A., Cottenier, T., Elrad, T.: Reducing aspect-base coupling through

model refinement. In: Proceedings of the Third Workshop on Models and Aspects,
Handling Crosscutting Concerns in MDSD at the 21st European Conference on
Object-Oriented Programming, Berlin, Germany, pp. 11-12 (2007) (Forschungs-
berichte der Fakultit IV, Elektrotechnik und Informatik, Bericht Nr. 6, 2007)

Aspects, Dependencies and Interactions
Report on the Workshop ADI at ECOOP 2007

Frans Sanen!, Ruzanna Chitchyan?, Lodewijk Bergmans?®,

Johan Fabry*, Mario Sudholt®, and Katharina Mehner®

! K.U.Leuven, Leuven, Belgium
frans.sanen@cs.kuleuven.be
2 Lancaster University, Lancaster, UK
rouza@comp.lancs.ac.uk
3 University of Twente, Enschede, The Netherlands
L.M.J.Bergmans@ewi.utwente.nl
4 Computer Science Department (DCC),
University of Chile
jfabry@dcc.uchile.cl
5 Ecole des Mines de Nantes, Nantes, France
Mario.Sudholt@emn.fr
5 Siemens, Germany
Katharina.Mehner@siemens.com

Abstract. The topics on aspects, dependencies and interactions are
among the key remaining challenges to be tackled by the Aspect-Oriented
Software Development (AOSD) community to enable a wide adoption of
AOSD technology. This second workshop, organized and supported by
the AOSD-Europe project, aimed to continue the wide discussion on
aspects, dependencies and interactions started at ADI 2006.

Keywords: Aspects, dependencies, interactions.

1 Introduction

Aspects are crosscutting concerns that exist throughout the software develop-
ment life cycle - from requirements through to implementation. While cross-
cutting other concerns, aspects often exert broad influences on these concerns,
e.g., by modifying their semantics, structure or behaviour. These dependencies
between aspectual and non-aspectual elements may lead to either desirable or
(more often) unwanted and unexpected interactions. The goal of this second
workshop was to continue the wide discussion on aspects, dependencies and
interactions started at ADI 2006, thus investigating the problems of aspects,
dependencies and interactions and handling them at all levels:

— starting from the early development stages (i.e., requirements, architecture,
and design), looking into dependencies between requirements (e.g., posi-
tive/negative contributions between aspectual goals) and interactions caused
by aspects (e.g., quality attributes) in requirements, architecture, and design;

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 75 2008.
© Springer-Verlag Berlin Heidelberg 2008

76 F. Sanen et al.

— analyzing these dependencies and interactions both through modeling and
formal analysis;

— considering language design issues which help to handle such dependencies
and interactions (e.g., ’declare precedence’ mechanism of AspectJ);

— studying such interactions in applications.

In the rest of this workshop report, we present the main topics that were dis-
cussed at the workshop, including a comparative overview of the main topics
of the accepted papers, a summary of the keynote speech by Gary T. Leavens
on ”Concerning efficient reasoning in AspectlJ-like languages, a summing-up of
the debates hold in the different discussion breakout groups and a synthesis
of the panel chaired by Awais Rashid on “Does AO equal quantification and
obliviousness?”

2 Accepted Papers

Papers accepted to the workshop covered a broad spectrum of problems related
to aspects, dependencies and interactions. We have clustered these papers into
three sets, with each set briefly summarized below.

2.1 Requirements, Analysis and Design

This set of papers focuses mainly on the early stages of AOSD: requirements
engineering, analysis and design modeling.

In [3], a method is proposed that supports the identification of functional re-
quirements that crosscut other functional requirements. In addition, guidelines
about how to generate derived or modified requirements are provided. The au-
thors of the paper use actions as the primary means for identifying match-points
between functional requirements. The authors propose to manually define a list
of all actions that are directly used by each action, i.e., the implied actions.
These implied actions are then used to check whether requirements crosscut
each other. Modes or states of the different entities in the system are also im-
portant for determining whether requirements crosscut: requirements related to
the same mode crosscut while requirements with mutually exclusive modes do
not crosscut each other. Next to implied actions and modes, action modifiers are
described to help to decide whether two requirements crosscut each other. The
authors distinguish between three action modifiers: restrict, unconditional and
none. If a requirement restricts the use of an action X, then all actions that im-
ply action X are also restricted. A similar observation is made for requirements
that can be used unconditionally.

In [19], the authors argue that currently it is difficult to verify whether a base
model is correctly structured and if the weaving reflects the intention of a mod-
eler. They propose a verification method for weaving in AspectM: an extensible
aspect-oriented modeling language [20021]. The paper focuses on the verification
of the base model. AspectM provides not only major join point mechanisms but
also a mechanism called meta-model access protocol that allows a modeler to

Aspects, Dependencies and Interactions 77

modify the meta-model, which is an extension of the UML meta-model. Pro-
totype tool support for the reflective model editor and model weaver has been
developed. The tool consists of a meta-model checker for verifying whether a base
model conforms to the meta-model, a module structure checker for detecting the
aspect interference and an assertion checker.

2.2 Language-Level Problems

This set of papers looks at novel AO language concepts regarding aspect interac-
tion management and issues of interaction between aspects written in different
AO domain-specific languages.

In [], novel concepts regarding aspect interaction management are defined.
The paper proposes some extensions to the AspectJ [2] language for detecting
unintended aspect interactions. These extensions are aspect and advice cardinal-
ity, and meta-aspects. The authors start off by providing a classification of seven
different types of aspect interactions. Some fundamental causes of undesired in-
teractions also are discussed. Next, aspect and advice cardinality is defined to
represent the absolute and relative proportions of aspect use and advice weaving.
Aspect cardinality is the measure of the expected number of aspect bindings to
an application while advice cardinality represents the expected number of ad-
vice weavings per aspect binding. It’s the developer’s responsibility to ensure
that multiple weavings at the same join point behave coherently depending on
a certain applicable execution order. Finally, meta-aspects are generic, abstract
specifications of concrete aspects with a number of advantages. These concrete
aspects usually can be derived automatically with all generic pointcut definitions
being instantiated into specific, narrow-scoped expressions.

In [T4], the authors focus on understanding interactions between foreign as-
pects, i.e., aspects written in different aspect domain-specific languages. They
distinguish between two categories: co-advising and foreign advising. Co-advising
is the application of multiple pieces of advice to the same join point while foreign
advising captures the situation where an aspect also advises aspects written in
languages other than the base. A classification and comparison of a set of com-
position approaches according to whether these resolve the interactions at the
language level or at the program level is covered in the paper. In order to un-
derstand why resolving these interactions at the language level is fundamentally
different than resolving them at the program level, the authors elaborate on both
the Reflex [I8] and Awesome [I3] frameworks. The latter handles both foreign
advising and co-advising interactions.

2.3 Contract-Based Approaches

This set of papers addresses contract-based approaches for managing aspect
interactions in an AO middleware or for controlling use of aspects without con-
straining the power of AOSD.

In [9], the authors aim to manage interaction issues in an aspect-oriented mid-
dleware platform by allowing interaction contracts to be specified which then are

78 F. Sanen et al.

enforced at runtime. Explicitly specifying these contracts improves the manage-
ment and control of such interactions. The work focuses on two broad categories
of aspect interactions: conflicts (two aspects being incompatible) and depen-
dencies (one aspect requiring another). The solution in the paper includes a
component model with a well-defined interaction model that supports a variety
of relationships. These relationships are specified using interaction contracts that
are evaluated at runtime to ensure conflicts do not occur and dependencies are
fulfilled. The interaction model is based on shared elements (such as a common
join point, a component instance or the base application). It’s possible to spec-
ify both basic (requires and provides) and advanced (conflict, precedence and
resolution) interaction contracts. The approach has been validated by applying
it to a series of interaction issues that occurred when implementing services for
a flexible and customizable AO middleware platform, CustAOMWare.

In [I6], an overview is given of approaches that address two important chal-
lenges for AOSD’s mainstream adaption: the evolution paradox problem and
the invasive nature of aspects. The evolution paradox encompasses the difficul-
ties that arise when an application created using AOSD tries to evolve and is
hampered by the fragile pointcut problem. Invasive aspects enable us to specify
harmful advice that breaks encapsulation. As a consequence, aspects can inval-
idate some of the already existing desirable properties of a system resulting in,
among others, security problems. Current approaches that solve or reduce one or
both of these problems are categorized according to the means they use: guide-
lines, code-based, analysis, model-based and contract-based. Next, a solution to
deal with these problems is sketched. The aim is not to constrain the power of
AOSD, but rather control aspect invasiveness and fit aspects to better support
evolution.

3 Keynote Speech by Gary T. Leavens on “Concerning
Efficient Reasoning in AspectJ-Like Languages”

The work presented in this keynote was concerned with efficient forms of rea-
soning. The approach taken was based on static analysis of source code that
is annotated with meta-information, to determine (non-)interference of the as-
pect with the base code. What was specified in this approach is object state
and method preconditions, heap effects and control effects. Heap effects include
postconditions such as changes to static variables. Control effects treat how the
control flow of the method is changed. Specification is done by the developer
through annotations of the source code. Some of these annotations are deducible,
however no support for automatic deduction is provided. Implementation verifi-
cation is performed by a conservative static analysis. The reasoner accumulates
facts as the program is processed, and verifies these with regard to the given
specifications.

The innovative part of this approach over existing reasoning with contracts ap-
proaches was that it has been effectively tailored towards aspects. This is because
the classical subtyping relationships used in these approaches are not applicable

Aspects, Dependencies and Interactions 79

to aspects. Around advice can be considered like an overriding method, but is of-
ten used to change the behavior in different ways than what an overriding method
would do. For example, advice introduces a number of control effects, such as run-
ning the original method multiple times. The existing specification approaches
cannot reflect this, and their verification steps are not designed for it.

Multiple possible and existing approaches for specification of advice were then
discussed. The first approach was using the semantics directly, which is maxi-
mally expressive, but implies re-verification for all changes, and provides no
abstraction. A second approach is considering functional advice, which has no
heap or control effects, which does not affect reasoning over the base code. This
advice cannot do anything however, and is therefore useless. Third, the concept
of harmless advice [6] was discussed. Here no information flows from the ad-
vice to the base code, which has as benefits that no heap effects on the base
occur. The downsides are that this does not address control effects, there is a
loss of expressiveness and inference amongst advice is not addressed. A fourth
approach is a refinement of behavioral subtyping, using an object-oriented anal-
ogy of around advices as overriding methods, and proceed as a super call. This
allows the base code to be verified independent of the advice. This has a num-
ber of downsides such as that quantification is limited, and that much advice
falls outside of this paradigm, as said above. In general the downsides are too
important to make this feasible. A fifth approach is specifying at the language
level which join points can be advised, as proposed by multiple authors. This
poses no limits on expressive power, but has as downside, amongst others, that
interference amongst advices is not considered.

The last approach discussed was reasoning about the level of specifications,
written in the aspect, that are woven. The presenter expects that this is the
direction that the community is taking. If successful, this has the benefits that
it is at a more abstract level than code, and will allow changes in methods and
advice without the need for re-verification. The downsides are that there is less
expressiveness and that the weaving of specifications is difficult and expensive.
However, there are some optimizations that are possible, e.g., ignoring inappli-
cable advice and spectator advice, which do not affect the heap nor has control
effects. A second form of optimization is via effect analysis: an advice heap in-
terferes with base code if it writes a field that is read in the base code. This is
efficient because it only needs to look at signatures, and furthermore the analysis
can also apply to two pieces of advice.

The last part of the talk then gave an overview of concern domains. It fol-
lows the specification weaving approach above, by declaring concern domains,
i.e., partitions of the heap, in which write effects are declared. A form of type
and effect analysis is then used to detect potential interference. This has been
proven to be sound for checking possible heap interference. A further benefit is
that spectators can be ignored in the verification phase. Downsides are the cost
incurred by manually declaring the effects of methods and advice, and a number
of restrictions placed on assertions.

80 F. Sanen et al.
4 Discussion Topics

A large part of the afternoon sessions of the workshop was devoted to group
discussions. Four main discussion topics were discussed. These group discussions
are summarized below.

4.1 Discussion Group 1: Aspects, Dependencies and Interactions
Due to and/or Prohibited by Languages

The goal of this discussion group was to investigate the role of programming
language design as a cause or a means to avoid unwanted interactions. The idea
behind this topic was that (a) the features of programming languages, such as
aspects, can be the enabler for certain interactions, both desired and undesired,
and (b) hence there are trade-offs to be made such as expressiveness versus
interactions. Some examples are listed next:

— If there were no join points within advice code, there would be no undesired
infinite loops caused by advice that is called while executing itself.

— Allowing for pointcuts or advice to ignore the regular OO encapsulation
rules, creates potential for unwanted dependencies between aspects and base
code.

— The ability to affect the control flow of the base code (e.g., by omitting a
proceed() statement within around advice) is powerful, but can also easily
destroy the correctness of the application.

One of the first issues that was discussed was whether or not a language
should allow to specify interactions, and/or avoid conflicts. Avoiding conflicts in
general is very hard, though, without severely reducing the expressiveness of the
language. Hence, the group considered that additional specifications would be
necessary to allow for the static detection (and hence avoidance) of interference:
for example in the form of contracts or relation specifications.

It was questioned by Shigeru Chiba that many new features for AOP are pro-
posed, often without convincing cases to motivate them, and raising the question
whether these features are not merely useful for certain applications or appli-
cation domains only. In particular, he suggested that many examples of aspects
were the codification of program idioms, where there might be other, more con-
ventional ways, such as mix-ins, generics or C++ templates, to express the same
behavior.

Further, the group discussed the kind of interferences that are caused by
AOP. First, it was proposed that these must be strongly related to the identi-
fying properties AOP, such as obliviousness and quantification. However, it was
concluded that in fact, AOP does not introduce new types of interference, but
only makes it easier to create them. The reason is that AOP offers new and
more powerful composition mechanisms, but in the end, these result in the same
types of behavioral combination that can be created manually in procedural or
object-oriented languages.

Aspects, Dependencies and Interactions 81

4.2 Discussion Group 2: Aspects, Dependencies and Interactions in
Applications

People that joined this discussion group came from two different backgrounds:
software product lines and middleware services. Discussion started by agreeing
on the fact that a feature in the product line world matches a service in a
middleware context. In addition, all discussion participants believed that the
true power of AOSD lies in quantification (i.e., composition) rather than in
obliviousness. One of the main problems with complete obliviousness is that the
aspect developer needs to be aware of the entire system. We refer the reader for
the remainder of this discussion topic to Section

Second topic within this discussion group was crosscutting programming in-
terfaces, XPI’s, work from Griswold et al. [T0] It was concluded that these XPI’s
would be a very nice idea especially in the context of feature development be-
cause a more safe evolution and composition becomes possible. The discussants
highlighted the issue of defining such a crosscutting programming interface. At
first sight, the base code developer seems more appropriate to define this inter-
face because he/she knows the code the best. But it’s hard to imagine that the
base code developer knows of all other pieces of code that will cooperate with
the base code. Obviously, one of the real problems in specifying pointcuts is that
they are mainly syntax-based, which gives rise to the fragile pointcut problem.
The group concluded that domain-specific aspect languages might be used as a
source of inspiration when trying to raise the level of abstraction.

The next discussion topic in this group consisted of the notion of two-sided
contracts as in [I6]. The group considered this to be a very interesting idea. The
idea of aspect categories and explicitly stating which categories are allowed at
a certain point seems a useful thing to do. In addition, the approach enables
manageability and safety at the same time. However, the question was posed if
the contracts as proposed in [I6] are expressive enough.

The group ended this discussion session by reflecting on what should be ex-
pressed? On the one hand, expressing what is allowed depends on the specific
requirements within a particular application context while expressing what is
not allowed seems to pose difficulties taking evolution into account.

4.3 Discussion Group 3: State and Future of Formal Methods for
Aspects

A lively discussion on the state and future for formal methods focused on two
main questions:

1. What kind of properties are of particular interest for AOSD?
2. What methods can be used to analyze and ensure such properties?

Aspect interactions were discussed as a prime example of properties relevant to
AOSD. The current notion of interactions between aspects that are applied to the
same joinpoint was identified as a major stumbling block for the handling of in-
teractions among aspects. This coarse notion of interactions forbids the analysis

82 F. Sanen et al.

of the frequent case where interactions are caused by two aspects manipulating
a common state at different joinpoints. As a second group of aspect-relevant
properties, security properties at different levels of abstraction (e.g., on the heap
level, on the level of calls to higher-level services) have been discussed.

The discussion on formal methods for the analysis and verification of aspect-
relevant properties centered on the need for easy to use, robust and scalable
tools. Currently, almost no existing tool supports more than one of those crite-
ria. A major underlying cause for this state of affairs is a lack of modular analysis
and verification methods for aspects: specifications of formal properties there-
fore are rather unwieldy and require time-consuming whole-program analyses.
Approaches that restrict aspects on the basis of traditional module boundaries
as well as pre-computation of analysis information for program parts that can be
reused in the context of analyses on larger programs were discussed as potential
solutions to these problems.

4.4 Discussion Group 4: A Classification of Aspect Dependencies
and Interactions

The topic of this discussion group was classifications for aspect dependencies and
interactions. As it was clear that the group would not be able to provide such a
classification or a classification framework, it looked into the characteristics of
classifications for aspect dependencies and interactions.

The discussion started from the following question: “Why are there so many
classifications for aspect dependencies and interactions?” By this question, the
group referred to the situation that in ADI there are relatively many different
classifications given that it is still a small community and compared to the overall
number of papers on ADI. Some of the noteworthy classifications are [I7J5l[7] but
this list is by no means complete.

Firstly, the group agreed on the fact that classifications are useful because they
are a means for understanding the problem space, i.e., the possible dependencies
and interactions among aspects or among aspects and other kind of modules.
Classifications are also a means to classify the solution space, i.e., the approaches
to detect or handle such dependencies. Classifications help with building tools
and allow comparing different approaches and tools. A useful classification should
cover commonalities and variabilities. Lastly, a useful classification should have
been successfully used more than once.

Classifications for aspect dependencies and interactions differ in the following
dimensions. These dimensions apply to the problem space that is introduced
above. The group considered these dimensions as orthogonal to each other.

— Development phases of the software development life cycle, i.e., requirements
engineering, architecture, design modeling, implementation, and testing.

— Expressive power of aspect languages.

— Level of abstraction.

It equally makes sense to think of classifications for the solution space, i.e., for
the approaches that detect or even solve aspect dependencies and interactions.

Aspects, Dependencies and Interactions 83

These approaches will use theoretical foundations. Therefore, the solution space
can be classified according to the complexity and limitations of the theoretical
foundations used.

Getting back to the question that the group asked itsef at the beginning of
the discussion, our conclusion is that there is potential for harmonization and
unification of classifications.

5 Panel on “Does AO Equal Quantification and
Obliviousness?”

The workshop hosted a panel that discussed the question “Does AO equal quan-
tification and obliviousness?” [§]. In particular, the panelists had to formulate
an answer to the following three questions.

1. Are quantification and obliviousness fundamental to AO?
2. If yes, why should we embrace them?
3. If no, then what is AO about?

We first elaborate on the different panel positions in which each of the four
panelists presented his personal view on the matter. Next, an overview is given
from the panel discussion based on questions from the workshop attendants.

5.1 Panel Positions

Michael Haupt started by declaring that we shouldn’t be dogmatic: AOSD is
about getting some constructs to modularize crosscutting concerns. There are
some concerns we can modularize with OO, others we can’t. For these, we intro-
duced the term aspects and that’s also what AO should be about: modularizing
those crosscutting concerns. W.r.t. obliviousness, concerns are already there even
before any code is being written. They are an inherent part of a system instead
of imposed on (part of) a system. In addition, crosscutting concerns are cross-
cutting by nature: we can’t do anything about it. Obliviousness, however, means
in its original definition that aspects can just be imposed on (parts of) a sys-
tem. The analogy with patches was thrown, where modules don’t know they
are being patched similar to modules that are oblivious to the fact if there is
an aspects imposed on them. This clearly results in a contradiction with cross-
cutting concerns being there from the start. Michael concluded his statement
on obliviousness with requiring that any part of the system should not be more
obliviousness to any other part than in traditional OO. For the quantification
part of the questions, a very important question in his opinion regards what we
should quantify over? Nowadays, we are able to quantify over both static and
dynamic parts of a system. We definitely must not quantify over internals of
modules, but over interfaces. This way, modules are allowed to express them-
selves in terms of situations that may be of interest to other modules without
giving away too many details.

84 F. Sanen et al.

Klaus Ostermann doesn’t like the word obliviousness much because it refers to
code locations and as a result, an aspect refers to a module. But an aspect affects
a point in the dynamic flow of a program and not a module. Aspects should offer a
modular implementation of global invariants of the form: “whenever X happens,
do Y”. Otherwise, it is implied that we only can understand programs in a step-
by-step manner rather than having some higher level of understanding, while
the latter is exactly what we should aim for. Many examples have proven this to
be true: thread yielding, garbage collection, lazy evaluation, email filtering, etc.
A major problem in AOSD so far is that one aspect may destroy the higher-level
invariant that is assumed by another aspect. Therefore, in future work, more
attention should go to the more controlled interaction between the invariants,
in such a way that the problem is composed of modules where each module is
responsible for maintaining one or more invariants.

Hidehiko Masuhara rephrased the title of the panel slightly to “AO = quan-
tification (+ obliviousness not necessary) + join point abstraction” because the
latter is often overlooked. AO mechanisms can be seen as means of identifying
join points and affecting the behavior at those join points, in parallel with the
3-part model that Masuhara et al. have proposed at ECOOP 2003 [15]. When
comparing both pieces of work, quantification nicely matches with the means
of identifying join points. On the other hand, obliviousness more or less equals
how the means of identifying and affecting are modeled, which is not an essential
part of the 3-part model. However, join point abstraction, which is not explicitly
mentioned in both models, should enable us to capture multiple join points at
once. This is often supported by giving a name to a set of join points, so the
details are hidden from the user. One of the other panelists asked the speaker
about the difference between quantification and join point abstraction. This was
countered by explaining that both are not the same thing. The speaker ended
with the open question “Is naming sufficient to provide abstraction?”

Wouter Joosen sketched the following historical perspective. When we moved
from procedural to OO programming, we went for localization. In this regard,
encapsulation can be considered as a first wave of modularization. When we
moved to aspects, this only happened because the modularization in OO was
not enough: crosscutting concerns still existed. But when going to a next, ex-
tended, paradigm, we should not throw away OO ideas. Transactions, persistence
and security are the three reusable services that one wants to configure without
re-implementing everything over and over again. And, (un)fortunately, obliv-
iousness here exactly is the crime for AO, such as for instance motivated by
[22012]. Due to the current context, we should choose another term (suggestion:
dependencies) and take it from there. Finally, some observations were given to
the audience. Firstly, the time to ship a software product is essential and makes
shifting to components necessary. Aspect should be combined with components
if they want to be useful in production environments. Secondly, quantification
needs to be over interfaces. Last, but not least, the idea to document the effect
of advice next to the effect of aspects [5] is a very valuable one.

Aspects, Dependencies and Interactions 85

5.2 Panel Discussion

Discussions were centered around three more specific topics: obliviousness, in-
terfaces and abstraction. Summaries for each of these discussions are provided
below.

Obliviousness. At the beginning of the discussion, the workshop participants
agreed that the developer of a module best knows what the module can expose
and what not. This should not be influenced by aspects. This is exactly what was
pointed out before by some of the panelists. Hidehiko Masuhara complemented
this line of thinking, which is similar to Aldrich’s open modules [I], by pointing
out that the abstraction itself is important, no matter who defines the abstraction
where. Hidehiko Masuhara reminded us of the meta-level programming world of
computational reflection and asked the question “How do we distinguish AO
from meta-level programming?”. Klaus Ostermann pointed out that meta-level
programming goes about a program with its syntax while AO, at least, tries to
talk about the semantics of a program.

According to the panelists, obliviousness seems to be a negative thing. Is there
any idea about how to design AO technologies without obliviousness? Given the
fact that AspectJ has built in some property of obliviousness, is it possible to
take it away? In other words, are quantification and obliviousness truly essen-
tial? For obliviousness, the answer would be that it is not essential, but useful.
Obviously, not all AO technologies must have obliviousness mechanisms. One
example would be using AspectJ only with pointcuts on annotations. As a con-
sequence, obliviousness is not essential, since AO technologies can do without
it. Languages of course also carry more or less obliviousness than others with
different degrees of coupling and cohesion. Klaus Ostermann complemented this
with stating that, in his opinion, a pointcut can involve private methods as long
as the implementation details are kept hidden. To illustrate, if an aspect depends
on the name of a method in AspectJ, one would interpret this as anti-modular
because changing implementation details can invalidate aspects. However, point-
cuts can either be formulated by referring to method names or by using higher
level pointcuts. The latter clearly does not break encapsulation.

Interfaces. A member of the audience also pointed out that the revised defini-
tions of quantification and obliviousness have been overlooked in the discussion
so far. Wouter Joosen responded that obliviousness stays a crime and in essence
is all about dependencies. Looking at the base code, do we have to know there
are dependencies? XPI’s [10] and Open Modules [I] are about specifying points
that you cannot see in code. We certainly do not want annotations everywhere
and a limited form of obliviousness sounds appealing. In any case, we need a
mechanism to express what we expect. If you say in an AO composition that
you imposed behaviour, then there should be contracts that say which compo-
sitions are allowed or not. We can be more precise about what we may want in
terms of aspect composition. But if we don’t want to be that precise, then we
should not violate existing contracts and break encapsulation of, e.g., private
elements. Michael Haupt illustrated this further by indicating that there exist

86 F. Sanen et al.

different ways in AspectJ to interact with a module ending up with something
not being a module any longer if encapsulation gets broken.

An audience member acknowledged Michael Haupt’s suggestion that we should
plan ahead. However, he claimed that some crosscutting concerns arise because
of requirements changes, often after the code is in place. Aspects were compared
to patches in this regard. Immediately, the panel intervened by declaring we have
a choice. For instance, if there is something in an OO system that doesn’t fit my
needs, I ask the developer of the module to create a new abstraction. The au-
dience questioned how that developer then could create that new abstraction?
One would think using obliviousness, probably. Michael Haupt responded that
another option is to have the ability in future AO languages for a module to ex-
pose its own interface, and not have an external entity responsible for this. Since,
the base module developer has full control over the code, he is the best person
in place to provide such an abstraction. Another member of the audience raised
the concern that you have component programming on the one side and com-
ponent assembly on the other. At the assembly-level, you absolutely need con-
tracts in a non-oblivious manner. Wouter Joosen complemented this with noting
that oblivousness is of little value when the programmer has full control over the
code. The latter is very important from the perspective of software industry where
things need to be shipped that won’t break. Everybody agreed on the following
conclusion of this discussion topic. We should differentiate between obliviousness
w.r.t. interfaces and obliviousness w.r.t. implementation. We should avoid the for-
mer while the latter is acceptable.

Abstraction. On a question what makes AO different, Hidehiko Masuhara
answered with join point abstraction. Klaus Ostermann’s view on this matter
regards the ability to declaratively describe interesting events and to use this
mechanism to implement invariants. Among others, the parallel with macros was
drawn. The position of the panel was that an aspect is exposed as a first-class
construct dynamically while a macro is done completely statically. The power
of using proceed() to manipulate the control flow of the program dynamically is
not available when working with macros. At the moment, aspects seem to be a
sort of swiss army knife doing everything from replacing a byte code rewriter to
implementing different crosscutting concerns. This highlights the importance to
recognise different needs for obliviousness instead of discouraging obliviousness
all together.

The audience started another discussion from the viewpoint of long term
maintenance of a product. What happens if changes are required in the next
release of a product? If in the previous release the base programmers weren’t
aware, then in this next release they should be. The relevance is clear if changes
to the base code are needed of which the base programmers know that it would
affect the aspects that rely on it. Wouter also pointed out the relevance of ver-
ifying any interaction that is modeled in a contract, such as for instance in [9],
by the compiler or a dedicated verifier. This relates to the ideas in [19].

Finally, Awais Rashid challenged the panel asking what abstraction is
essentially? Is naming a sufficient property for abstraction? Hidehiko Masuhara

Aspects, Dependencies and Interactions 87

acknowledged the fact that, nowadays, the only property we have at our disposal
is naming. Klaus Ostermann completed the position of the panel by stating that
naming alone probably will not be enough. Everyone agreed that join point ab-
straction will be one of the key differentiating factors. A join point definition
is abstract if and only if it is in terms of the domain at hand rather than a
projection to the code. An audience member asked if it was realistic to try to
abstract the pointcut specifications from the code and turn that into an interface
and then find an aspect that matches that interface? Would this be sufficient?
Hidehiko Masuhara emphasized the resemblance with XPI's [10]. Whether the
AspectJ pointcut language suffices to achieve this is another question. Klaus Os-
termann also referred to a paper of Kiczales et al. about aspect-aware interfaces
[11] at ICSE 2005.

6 Conclusion

This second workshop on Aspects, Dependencies and Interactions provided an
opportunity for presentations and lively discussion between researchers working
on AOSD, dependencies and interactions from all over the world. The workshop
continued the wide discussion on aspects, dependencies and interactions that
was started at last years” ADI 2006. It is our intention to continue encouraging
the challenging work on this topic by further organizing a number of follow-up
workshops.

7 Workshop Organizers and Participants

7.1 List of Organizers
The workshop organizing committee consisted of the following five members.

— Frans Sanen, K.U.Leuven, Belgium (co-chair)
Email: frans.sanen (at) cs.kuleuven.be

— Ruzanna Chitchyan, Lancaster University, UK (co-chair)
Email: rouza (at) comp.lancs.ac.uk

— Lodewijk Bergmans, University of Twente, The Netherlands
Email: L.M.J.Bergmans (at) ewi.utwente.nl

— Johan Fabry, Computer Science Department (DCC), University of Chile,
Chile
Email: jfabry (at) dcc.uchile.cl

— Mario Sudholt, Ecole des Mines de Nantes, France
Email: mario.sudholt (at) emn.fr

7.2 List of Attendees

The list of attendees officially registered for the workshop is presented alpha-
betically below. It should be noted that a number of unregistered attendees also
participated, but these are not listed here.

2]
oo

e B o

©

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

F. Sanen et al.

Zaid Altahat (Illinois Institute of Technology, USA)

Mourad Badri (Universit du Qubec Trois-Rivires, Canada)
David Bar-On (Open University of Israel, Israel)

Jorge Barreiros (Instituto Politecnico de Coimbra, Portugal)
Benoit Baudry (IRISA, France)

Alexandre Bergel (University of Potsdam, Germany)
Lodewijk Bergmans (University of Twente, The Netherlands)
Julien Charles (INRIA, France)

Shigeru Chiba (Tokyo Institute of Technology, Japan)

Johan Fabry (University of Chile, Chile)

Gael Fraeteur (PostSharp, Czech Republic)

Birgit Grammel (SAP AG, Germany)

Phil Greenwood (Lancaster University, UK)

Florian Heidenreich (Dresden University of Technology, Germany)
Kevin Hoffman (Purdue University, USA)

Atsushi Igarashi (Kyoto University, Japan)

Jendrik Johannes (Dresden University of Technology, Germany)
Wouter Joosen (K.U.Leuven, Belgium)

Bert Lagaisse (K.U.Leuven, Belgium)

Gary T. Leavens (IOWA State University, USA)

Hidehiko Masuhara (University of Tokyo, Japan)

Katharina Mehner (Siemens, Germany)

Klaus Ostermann (Technical University of Darmstadt, Germany)
Meir Ovadia (Cadence Design Systems, USA)

Marco Piccioni (ETH Zurich, Switserland)

Awais Rashid (Lancaster University, UK)

Frans Sanen (K.U.Leuven, Belgium)

Hans Schippers (University of Antwerp, Belgium)

Sergio Soares (Universidade de Pernambuco, Brazil)

Guido Soldner (FAU Erlangen, Germany)

Fredrik Sorensen (University of Oslo, Norway)

Mario Sudholt (Ecole des Mines de Nantes, France)

Shmuel Tyszberowicz (Open University of Israel, Israel)
Naoyasu Ubayashi (Kyushu Institute of Technology, Japan)

References

1.

2.
3.

Aldrich, J.: Open modules: Modular reasoning about advice. In: Black, A.P. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 144-168. Springer, Heidelberg (2005)
Aspectj, http://www.eclipse.org/aspect;j

Bar-On, D., Tyszberowicz, S.: Derived requirements generation. In: Proceedings
of the Second International Workshop on Aspects, Dependencies and Interactions
(held at ECOOP), pp. 5-10 (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Aspects, Dependencies and Interactions 89

. Barreiros, J., Moreira, A.: Aspect interaction management with meta-aspects and

advice cardinality. In: Proceedings of the Second International Workshop on As-
pects, Dependencies and Interactions (held at ECOOP), pp. 11-16 (2007)

. Clifton, C., Leavens, G.T.: Spectators and assistants: Enabling modular aspect-

oriented reasoning. Technical Report TR02-10, Iowa State University (2002)

. Dantas, D.S., Walker, D.: Harmless advice. In: 33rd ACM SIGPLAN - SICACT

Symposium on Principles of Programming Languages (POPLO06), vol. 41(1), pp.
383396 (2006)

. Douence, R., Fradet, P., Siidholt, M.: Composition, reuse, and interaction analysis

of stateful aspects. In: Proceedings of the 3rd international Conference of Aspect-
oriented Software Development, ACM Press, New York (2004)

. Filman, R., Friedman, D.: Aspect-oriented programming is quantification and obliv-

iousness. In: OOPSLA 2000. Proceendings of Workshop on Advanced Separation
of Concerns, October 2000, Minneapolis (2000), http://ic-www.arc.nasa.gov/
ic/darwin/oif/leo/filman/text/oif/aop-is.pdf

. Greenwood, P., Coulson, G., Rashid, A., Lagaisse, B., Sanen, F., Truyen, E.,

Joosen, W.: Interactions in aspect-oriented middleware. In: Proceedings of the
Second International Workshop on Aspects, Dependencies and Interactions (held
at ECOOP), pp. 17-22 (2007)

Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., Rajan, H.:
Modular software design with crosscutting interfaces. IEEE Software 23(1), 51-60
(2006)

Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning.
In: ICSE 2005. Proceedings of the 27th international conference on Software engi-
neering, pp. 49-58. ACM Press, New York (2005)

Kienzle, J., Gélineau, S.: Ao challenge - implementing the acid properties for trans-
actional objects. In: Proceedings of the 5th International Conference on Aspect-
Oriented Software Development, pp. 202-213. ACM Press, New York (2006)
Kojarski, S., Lorenz, D.H.: Awesome: A co-weaving system for multiple aspect-
oriented extensions. In: Proceedings of the 22nd Annual Conference on Object-
Oriented Programming Systems, Languages and Applications, ACM Press, New
York (2007)

Lorenz, D.H., Kojarski, S.: Understanding aspect interactions, co-advising and for-
eign advising. In: Proceedings of the Second International Workshop on Aspects,
Dependencies and Interactions (held at ECOOP), pp. 23-28 (2007)

Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect-oriented mechanisms.
In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer, Heidelberg (2003)
Munoz, F., Barais, O., Baudry, B.: Vigilant usage of aspects. In: Proceedings of the
Second International Workshop on Aspects, Dependencies and Interactions (held
at ECOOP), pp. 29-35 (2007)

Rinard, M., Salcianu, A., Bugrara, S.: A classification system and analysis for
aspect-oriented programs. In: Proceedings of SIGSOFT 2004/FSE-12, pp. 147-
158. ACM, New York (2004)

Tanter, E., Noyé, J.: A versatile kernel for multi-language AOP. In: Glick, R.,
Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 173-188. Springer, Heidelberg
(2005)

Ubayashi, N., Maeno, Y., Noda, K., Otsubo, G.: A verification mechanism for
weaving in extensible aom languages. In: Proceedings of the Second International
Workshop on Aspects, Dependencies and Interactions (held at ECOOP), pp. 3641
(2007)

http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/aop-is.pdf
http://ic-www.arc.nasa.gov/ic/darwin/oif/leo/filman/text/oif/aop-is.pdf

90

20.

21.

22.

F. Sanen et al.

Ubayashi, N., Tamai, T., Sano, S., Maeno, Y., Murakami, S.: Model compiler con-
struction based on aspect-oriented mechanisms. In: Gliick, R., Lowry, M. (eds.)
GPCE 2005. LNCS, vol. 3676, pp. 109-124. Springer, Heidelberg (2005)
Ubayashi, N., Tamai, T., Sano, S., Maeno, Y., Murakami, S.: Aspect-oriented and
collaborative systems metamodel access protocols for extensible aspect-oriented
modeling. In: Zhang, K., Spanoudakis, G., Visaggio, G. (eds.) SEKE, pp. 4-10
(2006)

Win, B.D.: Engineering application-level security through aspect-oriented software
development. PhD dissertation (2004)

Enabling Software Evolution Via AOP and
Reflection
Report on the Workshop RAM-SE at ECOOP 2007

Manuel Oriol!, Walter Cazzola?, Shigeru Chiba®, Gunter Saake?,
Yvonne Coady®, Stéphane Ducasse®, and Giinter Kniesel”

Y ETH Zurich, Zurich, Switzerland
moriol@inf.ethz.ch
2 Universita degli Studi di Milano, Milano, Italy
cazzola@dico.unimi.it
3 Tokyo Institute of Technology, Tokyo, Japan
chiba@is.titech.ac.jp
* Otto-von-Guericke-Universitidt Magdeburg, Magdeburg, Germany
saake@iti.cs.uni-magdeburg.de
5 University of Victoria, Victoria, Canada
ycoady@cs.uvic.ca
6 INRIA, Lille, France
stephane.ducasse@inria.fr
7 University of Bonn, Bonn, Germany
gk@cs.uni-bonn.de

Abstract. Following last three years’ RAM-SE (Reflection, AOP and
Meta-Data for Software Evolution) workshop at the ECOOP conference,
the RAM-SE’07 workshop was a successful and popular event. As its
name implies, the workshop’s focus was on the application of reflective,
aspect-oriented and data-mining techniques to the broad field of software
evolution. Topics and discussions at the workshop included mechanisms
for supporting software evolution, technological limits for software evo-
lution and tools and middleware for software evolution. The workshop’s
main goal was to bring together researchers working in the field of soft-
ware evolution with a particular interest in reflection, aspect-oriented
programming and meta-data. The workshop was organized as a full day
meeting, partly devoted to presentation of submitted position papers
and partly devoted to panel discussions about the presented topics and
other interesting issues in the field. In this way, the workshop allowed
participants to get acquainted with each other’s work, and stimulated
collaboration.

1 Workshop Description and Objectives

Software evolution and adaptation is a research area that offers stimulating chal-
lenges for both academic and industrial researchers. The evolution of software
systems, to face unexpected situations or just for improving their features, relies

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 91 2008.
© Springer-Verlag Berlin Heidelberg 2008

92 M. Oriol et al.

on software engineering techniques and methodologies. Nowadays a similar ap-
proach is not applicable in all situations e.g., for evolving nonstopping systems
or systems whose code is not available.

Features of reflection such as transparency, separation of concerns, and ex-
tensibility seem to be perfect tools to aid the dynamic evolution of running
systems. Aspect-oriented programming (AOP) can simplify code instrumenta-
tion whereas techniques that rely on meta-data can be used to inspect the system
and to extract the necessary data for designing the heuristic that the reflective
and aspect-oriented mechanism use for managing the evolution.

We feel the necessity to investigate the benefits brought by the use of these
techniques on the evolution of object-oriented software systems. In particular we
would determine how these techniques can be integrated with more traditional
approaches to evolve a system and the benefits we get from their use.

The overall goal of this workshop was that of supporting circulation of ideas
between these disciplines. Several interactions were expected to take place be-
tween reflection, aspect-oriented programming and meta-data for the software
evolution, some of which we cannot even foresee. Both the application of reflec-
tive or aspect-oriented techniques and concepts to software evolution are likely
to support improvement and deeper understanding of these areas. This workshop
has represented a good meeting-point for people working in the software evolu-
tion area, and an occasion to present reflective, aspect-oriented, and meta-data
based solutions to evolutionary problems, and new ideas straddling these areas,
to provide a discussion forum, and to allow new collaboration projects to be es-
tablished. The workshop was a full day meeting. One part of the workshop was
devoted to presentation of papers, and another to panels and to the exchange of
ideas among participants.

2 Workshop Topics and Structure

Every contribution that exploits reflective techniques, aspect-oriented program-
ming and/or meta-data to evolve software systems were welcome. Specific topics
of interest for the workshop have included, but were not limited to:

— aspect-oriented middleware and environments for software evolution;

— adaptive software components and evolution as component composition;

— evolution planning and deployment through aspect-oriented techniques and
reflective approaches;

— aspect interference and composition for software evolution;

— feature- and subject-oriented adaptation;

— unanticipated software evolution supported by AOSD or reflective
techniques;

— MOF, code annotations and other meta-data facilities for software evolution;

— software evolution tangling concerns;

— techniques for refactoring into AOSD and to get the separation of concerns;

— early aspect evolution, i.e., to design evolution by evolving the design infor-
mation or the application in its early stages of development.

Enabling Software Evolution Via AOP and Reflection 93

To ensure lively discussion at the workshop, the organizing committee has
chosen the contributions on the basis of topic similarity that will permit the
beginning of new collaborations. To grant an easy dissemination of the proposed
ideas and to favorite an ideas interchange among the participants, accepted
contributions are freely downloadable from the workshop web page:

http://homes.dico.unimi.it/RAM-SEO7.html.

The workshop was a full day meeting organized in four sessions. The first ses-
sion was devoted to the Shigeru Chiba’s keynote speech on “How We Should Use
Aspects”. Each of the remaining sessions has been characterized by a dominant
topic that perfectly describes the presented papers and the related discussions.
The two dominant topics were: Classic Software Evolution, and Aspect-Oriented
and Reflection for Software Evolution. During each session, paper presentations
took 15 minutes with a 5 minutes discussion. At the end of the day a special ses-
sion was devoted to discussions. The discussion related to each session has been
brilliantly lead respectively by Mario Stidholt, Walter Cazzola, Manuel Oriol and
Gunter Saake.

The workshop has been very lively, the debates very stimulating, and the high
number of participants (see appendix [A]) testifies the interest in the application
of reflective, aspect- and meta-data oriented techniques to software evolution as
well as software evolution in general.

3 Important References

The following publications are important references for people interested in learn-
ing more about the topics of this workshop:

— Pattie Maes. Computational Reflection. PhD thesis, Vrije Universiteit Brus-
sel, Brussels, Belgium, 1987.

— Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Pro-
gramming. In 11th Furopean Conference on Object Oriented Programming
(ECOOP’97), LNCS 1241, pages 220-242, Helsinki, Finland, June 1997.
Springer-Verlag.

— The proceedings of the International Conference on Aspect-Oriented Soft-
ware Development (AOSD) from 2002 onward. See also http://aosd.net/
archive/index.php.

— Several tracks related to aspect-oriented software development and evolution
at the International Conference on Software Maintenance (ICSM) and the
Working Conference on Reverse Engineering (WCRE), from 2002 onward.

— The software evolution website at the Program Transformation wiki:

http://www.program-transformation.org/twiki/bin/view/
Transform/SoftwareEvolution.

— The workshops proceedings of the USE workshop series:

http://www.informatik.uni-bonn.de/~gk/use/.

http://homes.dico.unimi.it/RAM-SE07.html
http://www.informatik.uni-bonn.de/~gk/use/

94 M. Oriol et al.

4 Workshop Overview: Session by Session

Session on How We Should Use Aspects

In the first morning session, Shigeru Chiba gave a keynote talk that was mod-
erated by Mario Siidholt:

How We Should Use Aspects

Abstract. Besides classic logging and the observer pattern, several ap-
plications of aspect-oriented programming (AOP) have been proposed so
far. This talk reviews those applications and discusses what properties
of AOP are significant and promising for software evolution. It will also
discuss what are unique features of AOP against related technology such
as reflection and mizin layers.

Chiba’s provocative talk presented several applications where AOP should
be used. The first application presented is logging as it consists of a multi-
tude of similar calls that can be located anywhere in the code. This is one
of the possibilities used by IBM field engineers. The Aspect-Oriented interac-
tive debuggers [I], high performance computing [2] could also be interesting.
Application-level scheduling [3] is also a possible use of AOP and as an example,
the application level scheduling achieved better performances than the Linux
scheduler. Non-functional requirements do not appear to be the best fields to
which aspects can be best applied as they are generally very class centric. One
of the lessons drawn is that most aspects are heterogeneous and thus AOP does
not avoid iterative code of programming idioms. Another lesson is that pointcut
advices are seldom used, thus the question is if pointcut is a primary mechanism.

The keynote talk fostered further discussions which triggered the following
points:

— It was suggested that AOP is better than the meta-object protocol (MOP)
for persistence.

— The lessons outlined by Chiba are mostly valid because he is drawing them
from AspectJ, using another aspect language (e.g., a higher level one) could
lead to very different results.

— There are a handful of applications that use AOP (MySQL, WebSphere,...)
while many applications use MOP. The reason for such a fact may be that
the AOP community did not focus on a simple set of “evident” applications
to help people getting in the methodology.

Session on Classic Software Evolution

Classical software evolution was the main focus of the second session. The session
was moderated by Walter Cazzola.

[4] Toward Computer-Aided Usability Evaluation Evolving Interactive Soft-
ware. Yonglei Tao (Grand Valley State University, USA).

Enabling Software Evolution Via AOP and Reflection 95

Yonglei Tao gave the presentation.

[6] Towards Runtime Adaptation in a SOA Environment. Florian Irmert, Mar-
cus Meyerhofer and Markus Weiten (Friedrich-Alexander Universitit
Erlagen-Niirnberg, Germany).

Florian Irmert gave the presentation.

[6] IDE-integrated Support for Schema Evolution in Object-Oriented Appli-
cations. Marco Piccioni, Manuel Oriol, and Betrand Meyer (ETH Ziirich,
Switzerland).

Marco Piccioni gave the presentation.

[7] Property-preserving Evolution of Components Using VPA-Based Aspects.
Dong Ha Nguyen and Mario Stdholt, Ecole des Mines de Nantes, France.

Mario Siidholt gave the presentation.

Session on Aspect-Oriented and Reflection for Software
Evolution

Aspect-oriented and reflection for software evolution was the main focus of the
third session. The session was moderated by Manuel Oriol.

[8] Characteristics of Runtime Program Evolution. Mario Pukall, and Martin
Kuhlemann (Otto von Guericke University Magdeburg, Germany).

Mario Pukall gave the presentation.
[9] Aspect-Based Introspection and Change Analysis for Evolving Programs.
Kevin Hoffman, Murali Krishna Ramanathan, Patrick Fugster, and Suresh
Jagannathan (Purdue University, USA).

Kevin Hoffman gave the presentation.

[10] Morphing Software for Easier Evolution. Shan Shan Huang and Yannis
Smaragdakis (University of Oregon, USA).

Yannis Smaragdakis gave the presentation.
[11] AOP vs Software Evolution: a Score in Favor of the Blueprint. Walter
Cazzola (DICo Universita degli Studi di Milano, Italy), and Sonia Pini (DISI
Universita degli Studi di Genova, Italy).

Sonia Pini gave the presentation.

96 M. Oriol et al.

Session on Future Evolutions of RAM-SE

The workshop ended with a session led by Gunter Saake on the future of the
RAMS-SE workshop and fostered lively discussions. Most of the discussion focused
on the fact that aspects are polarizing people either positively or very negatively.
In order to develop aspects further, it is needed to show very simple examples
in which aspects have an evident applicability and ease the task. Even if it
is probably not possible to find use cases where only aspects could solve the
problem there are numerous areas in which the most elegant solution would use
aspects. The cost of having people understand and use aspects is probably to
propose and advocate emblematic simplifications. This is inspired by reflection
being what probably stands out of the meta-object protocol.

5 Tendencies in Reflection, AOP and Meta-data for
Software Evolution

The workshop outlined at least three major areas which are currently active:

— Evolution enabling technologies.

— Applications of aspects to understanding or controlling the evolution of pro-
grams.

— New trends in AOP for smooth evolution.

The first area consists of technologies that improve the direct evolution capa-
bilities of programs. As such, the work of Piccioni et al. on schema evolution [6]
enables the easy programming of persistent applications by using reflexive tech-
niques. The work of Irmert et al. on dynamic adaptation of applications through
the use of dynamic aspects [5] opens new directions in the runtime evolution of
applications. The work from Nguyen et al. on the dynamic evolution of pushdown
automata [7] opens new leads in the correctness of dynamic updates. The work
of Pukall et al. [8] analyzes languages and technologies according to the time
of evolution and the type of evolution that they enable while effecting runtime
evolution.

The second area consists of applications of the aspects technologies that ease
the understanding of the state or of the evolution of programs. For example the
work by Tao on the evaluation of usability of interactive software [4] uses aspects
to trace users actions. The work by Hoffman et al. [9] instruments programs using
aspects to gather information on the state of a program while it executes in order
to understand the changes that were performed at runtime when updated.

The third area consists of new trends in AOP that ease the evolution of
applications coded with aspects. As an example the work by Huang et al. [10]
allows for a better evolvability of programs by defining the morphing technique.
The work of Cazzola et al. [TT] proposes a new aspect language that solves the
fragile pointcut issue and evaluate the solution with evolving programs.

Enabling Software Evolution Via AOP and Reflection 97

6 Final Remarks

The main goal of the workshop was to bring together researchers interested in
the field and have them communicate on their respective work. The workshop
lived up to its expectations, with high-quality submissions and presentations,
and lively and stimulating discussions. The vitality of the work as well as the
lively discussions that took place during the workshop show that the issues
addressed by the workshop are plainly relevant and need such a forum to be
discussed. We hope participants found the workshop interesting and useful, and
encourage them to finalize their position papers and submit them as full papers
to international conferences interested in the topics of this workshop.

Acknowledgements. We wish to thank Mario Siidholt both for his interest in
the workshop and for his help during the workshop as chairman and speaker. We
wish also to thank all the researchers that have participated to the workshop.

We have also to thank the Department of Informatics and Communication of
the University of Milan, the Department of Mathematical and Computing Sci-
ences of the Tokyo institute of Technology, ETH Zurich and the Institute fiir Tech-
nische und Betriebliche Informationssysteme, Otto-von-Guericke-Universitat
Magdeburg for their various supports.

References

1. Usui, Y., Chiba, S.: Bugdel: An aspect-oriented debugging system. In: APSEC
2005. 12th Asia-Pacific Software Engineering Conference, December 15-17, 2005,
Taipei, Taiwan, pp. 790-795 (2005)

2. Nishizawa, M., Chiba, S., Tatsubori, M.: Remote pointcut: a language construct for
distributed aop. In: AOSD 2004. Proceedings of the 3rd International Conference
on Aspect-Oriented Software Development, pp. 7-15 (2004)

3. Kourai, K., Hibino, H., Chiba, S.: Aspect-oriented application-level scheduling for
j2ee servers. In: AOSD 2007. Proceedings of the 6th International Conference on
Aspect-Oriented Software Development, pp. 1-13 (2007)

4. Tao, Y.: Toward Computer-Aided Usability Evaluation Evolving Interactive Soft-
ware. In: In Cazzola, W., Chiba, S., Coady, Y., Ducasse, S., Kniesel, G., Oriol, M.,
Saake, G. (eds.) Proceedings of ECOOP 2007. Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE 2007), Berlin, Germany (2007)

5. Irmert, F., Meyerhofer, W.M.: Towards Runtime Adaptation in a SOA Environ-
ment. In: Cazzola, W., Chiba, S., Coady, Y., Ducasse, S., Kniesel, G., Oriol, M.,
Saake, G. (eds.) Proceedings of ECOOP 2007 Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE 2007), Berlin, Germany (2007)

6. Piccioni, M., Oriol, M., Meyer, B.: IDE-integrated Support for Schema Evolution in
Object-Oriented Applications. In: Cazzola, W., Chiba, S., Coady, Y., Ducasse, S.,
Kniesel, G., Oriol, M., Saake, G. (eds.) Proceedings of ECOOP 2007 Workshop on
Reflection, AOP and Meta-Data for Software Evolution (RAM-SE 2007), Berlin,
Germany (2007)

98

10.

11.

M. Oriol et al.

Nguyen, D.H., Stidholt, M.: Property-preserving Evolution of Components Using
VPA-Based Aspects. In: Cazzola, W., Chiba, S., Coady, Y., Ducasse, S., Kniesel,
G., Oriol, M., Saake, G. (eds.) Proceedings of ECOOP 2007 Workshop on Reflec-
tion, AOP and Meta-Data for Software Evolution (RAM-SE 2007), Berlin, Ger-
many (2007)

Pukall, M., Kuhlemann, M.: Characteristics of Runtime Program Evolution. In:
Cazzola, W., Chiba, S., Coady, Y., Ducasse, S., Kniesel, G., Oriol, M., Saake, G.
(eds.) Proceedings of ECOOP 2007 Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE 2007), Berlin, Germany (2007)

Hoffman, K., Ramanathan, M.K., Eugster, P., Jagannathan, S.: Aspect-Based In-
trospection and Change Analysis for Evolving Programs. In: Cazzola, W., Chiba,
S., Coady, Y., Ducasse, S., Kniesel, G., Oriol, M., Saake, G. (eds.) Proceedings of
ECOOP 2007 Workshop on Reflection, AOP and Meta-Data for Software Evolution
(RAM-SE 2007), Berlin, Germany (2007)

Huang, S.S., Smaragdakis, Y.: Morphing Software for Easier Evolution. In: Cazzola,
W., Chiba, S., Coady, Y., Ducasse, S., Kniesel, G., Oriol, M., Saake, G. (eds.)
Proceedings of ECOOP 2007 Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE 2007), Berlin, Germany (2007)

Cazzola, W., Pini, S.: AOP vs Software Evolution: a Score in Favor of the Blueprint.
In: Cazzola, W., Chiba, S., Coady, Y., Ducasse, S., Kniesel, G., Oriol, M., Saake, G.
(eds.) Proceedings of ECOOP 2007 Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE 2007), Berlin, Germany (2007)

A Workshop Attendee

The success of the workshop is mainly due to the people that have attended it
and to their effort to participate to the discussions. The following is the list of
the attendees in alphabetical order.

Name Affiliation Country e-mail

Blair, Gordon Lancaster University United Kingdom gordon@comp.lancs.ac.uk
Cazzola, Walter Universita degli Studi di Milano Italy cazzola@dico.unimi.it

Chiba, Shigeru Tokyo Institute of Technology Japan chiba@is.titech.ac.jp
Greenwood, Phil Lancaster University United Kingdom greenwood@comp.lancs.ac.uk
Hoffman, Kevin Purdue University USA KevinJohnHoffman@gmail.com
Huang, Shan Shan Georgia Tech USA ssh@cc.gatech.edu

Irmert, Florian Universitit Erlagen-Niirnberg Germany florian.irmert@informatik.uni-erlagen.de
Kienle, Holger University of Victoria Canada, kienle@cs.uvic.ca

Masuhara, Hidehiko University of Tokyo Japan masuhara@graco.c.u-tokyo.ac.jp
Mens, Kim Université Catholique de Louvain Belgium km@info.ucl.ac.be

Mosser, Sebastian University of Nice/CNRS France mosser@polytech.unice.fr
Oriol, Manuel ETH Ziirich Switzerland moriol@inf.ethz.ch

Piccioni, Marco ETH Ziirich Switzerland marco.piccioni@inf.ethz.ch
Pini, Sonia Universita degli Studi di Genova Italy pini@disi.unige.it

Pukall, Mario University of Magdeburg Germany pukall@iti.cs.uni-magdeburg.de
Rashid, Awais Lancaster University United Kingdom marash@comp.lancs.ac.uk
Stidholt, Mario Ecole des Mines de Nantes France sudholt@emn.fr

Serensen, Fredrik University of Oslo Norway fredrso@ifi.uio.no

Saake, Gunter University of Magdeburg Germany saake@iti.cs.uni-magdeburg.de
Smaragdakis, Yannis University of Oregon USA yannis@cs.uoregon.edu

Tanter, Bric University of Chile Chile etanter@dcc.uchile.cl

Tao, Yonglei Grand Valley State University USA taoy@gvsu.edu

Ueyama, Jé University of Campinas Brazil joueyama@ic.unicamp.br

Yonezawa Akinori University of Tokyo Japan yonezawa@is.s.u-tokyo.ac.jp

Formal Techniques for Java-Like Programs
Report on the Workshop FT{fJP at ECOOP 2007

John Boyland'2, Dave Clarke?, Gary Leavens®*, Francesco Logozzo®,

and Arnd Poetzsch-Heffter®

! University of Wisconsin-Milwaukee, USA
boyland@uwm.edu
2 Nanjing University, China
3 CWI, Amsterdam, Netherlands
dave@cwi.nl
4 University of Central Florida, USA
leavens@eecs.ucf.edu
5 Microsoft Research, USA
logozzo@microsoft.com
6 Universitit Kaiserslautern, Germany
poetzsch@informatik.uni-kl.de

Abstract. Formal techniques can help analyze programs, precisely de-
scribe program behavior, and verify program properties. Newer languages
such as Java and C# provide good platforms to bridge the gap between
formal techniques and practical program development, because of their
reasonably clear semantics and standardized libraries. Moreover, these
languages are interesting targets for formal techniques, because the novel
paradigm for program deployment introduced with Java, with its im-
proved portability and mobility, opens up new possibilities for abuse and
causes concern about security.

Work on formal techniques and tools for programs and work on the for-
mal underpinnings of programming languages themselves naturally com-
plement each other. This workshop aims to bring together people working
in both these fields, on topics such as: specification techniques and inter-
face specification languages, specification of software components and li-
brary packages, automated checking and verification of program pro
perties, verification logics, language semantics, program analysis, type
systems, security.

1 Call for Papers

The Call for Papers included the text from the abstract above and the following
text:

Contributions are sought on open questions, new developments, or in-
teresting new applications of formal techniques in the context of Java or
similar languages, such as C#. Contributions should not merely present
completely finished work, but also raise challenging open problems or

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 99 2008.
© Springer-Verlag Berlin Heidelberg 2008

100

J. Boyland et al.

propose speculative new approaches. We particularly welcome contribu-
tions that simply suggest good topics for discussion at the workshop, or
raise issues that you feel deserve the attention of the research community.
Submissions must be in English and are limited to 10 pages using LNCS
style (excluding bibliography). Papers must be submitted electronically
via the workshop website: http://cs.nju.edu.cn/boyland/ftjp.

An informal proceedings will be made available to workshop partici-
pants. Papers will also be available from the workshop web page. There
will be no formal publication of papers. We intend to invite selected pa-
pers for a special journal issue as a follow-up to the workshop, as has
been done for some previous FTfJP workshops.

Indeed, after the workshop, we invited eight papers to submit updated papers
for a special issue of JOT (Journal of Object Technology). Six teams of authors
have responded positively thus far.

2

People

2.1 Programme Committee

Cyrille Valentin Artho (RCIS/AIST, Japan),

Frank S. de Boer (CWI, Netherlands),

Fabrice Bouquet (University of Franche Comté, France),

John Boyland (Nanjing University, China and University of Wisconsin-
Milwaukee, USA) chair,

Alex Buckley (Sun Microsystems, UK),

Patrice Chalin (Concordia University, Canada),

Dave Clarke (CWI, Netherlands),

Paola Giannini (University of Piemonte Orientale, Italy),

Marieke Huisman (INRIA Sophia Antipolis, France),

Giovanni Lagorio (Universita di Genova, Italy),

Gary T. Leavens (Iowa State University, USA, now Central Florida Univer-
sity, USA),

— Francesco Logozzo (Microsoft Research, USA),

Wojciech Mostowski (Radboud University Nijmegen, Netherlands),
Wolfram Schulte (Microsoft Research, USA).

2.2 Organizers

John Boyland (University of Wisconsin-Milwaukee, USA) co-chair,
Sophia Drossopoulou (Imperial College, UK),

Susan Eisenbach (Imperial College, UK),

Gary T. Leavens (Central Florida University, USA),

Peter Miiller (ETH Ziirich, Switzerland),

Arnd Poetzsch-Heffter (Universitit Kaiserlautern, Germany),

Erik Poll (Radboud University Nijmegen, Netherlands), co-chair.

Formal Techniques for Java-Like Programs 101

2.3 Participants

Suad Alagic, University of South Maine, alagic@cs.usm.maine.edu
Jonathan Aldrich, Carnegie Mellon University, aldrich@cs.cmu.edu
Philippe Altherr, Google, paltherr@google.com

Davide Ancona, DISI - University of Genova, davide@disi.unige.it
Eric Bodden, McGill University, eric.bodden@mail .mcgill.ca

John Boyland, University of Wisconsin-Milwaukee, boyland@uwm. edu
Alex Buckley, Sun Microsystems, alex.buckley@sun.com

Nicholas Cameron, Imperial College, London, ncameron@doc.ic.ac.uk
Patrice Chalin, Concordia University, chalin@encs.concordia.ca
Julien Charles, INRIA, julien.charles@inria.fr

Dave Clarke, CWI, Amsterdam, dave@cwi.nl

Curt Clifton, Rose-Hulman Institute of Technology,
clifton@rose-hulman.edu

Mario Coppo, Universita di Torino, coppo@di.unito.it

Vincent Cremet, (no institution specified), vincent.cremet@gmail.com
Markus Degen, Universitat Freiburg, degen@informatik.uni-freiburg.de
Mariangiola Dezani, Universita di Torino, dezani@di.unito.it

Werner Dietl, ETH Ziirich, dietlw@inf.ethz.ch

Sophia Drossopoulou, Imperial College, London, sd@doc.ic.ac.uk
Gilles Dubochet, Ecole Polytechnique Fédérale de Lausanne,
gilles.dubochet@epfl.ch

Erik Ernst, University of Aarhus, eernst@daimi.au.dk

Manuel Fahndrich, Microsoft Research, maf@microsoft.com

Diego Garbervetsky, Universidad de Buenos Aires, diegog@dc.uba.ar
Elena Giachino, Universita di Torino, giachino@di.unito.it

Paola Giannini, Universita Piemonte Orientale, giannini@mfn.unipmn.it
Philipp Haller, Ecole Polytechnique Fédérale de Lausanne,
philipp.haller@epfl.ch

Clément Hurlin, INRIA, clement.hurlin@inria.fr

Atsushi Igarashi, Kyoto University, igarashi@kuis.kyoto-u.ac. jp
Einar Broch Johnsen, University of Oslo, einarj@ifi.uio.no
Christine Kehyayan, Lebanese American University,
christine.kehyayan@lau.edu.1lb

Eric Kerfoot, University of Oxford, eric.kerfoot@comlab.ox.ac.uk
Neelakantan Krishnaswami, Carnegie Mellon University, neelk@cs.cmu.edu
Gary T. Leavens, University of Central Florida, leavens®@eecs.ucf.edu
Francesco Logozzo, Microsoft Research, logozzo@microsoft.com
Rosemary Monahan, National University of Ireland, Maynooth,
rosemary.monahan@nuim.ie

Peter Miiller, Microsoft Research, mueller@microsoft.com

Matthew Parkinson, University of Cambridge,
matthew.parkinson@cl.cam.ac.uk

Arnd Poetzsch-Heffter, Universitit Kaiserslautern,
poetzsch@informatik.uni-kl.de

102 J. Boyland et al.

John Potter, University of New South Wales, Sydney,
potter@cse.unsw.edu.au

Chieri Saito, Kyoto University, saito@kuis.kyoto-u.ac.jp

Yannis Smaragdakis, University of Oregon, yannis@cs.uoregon.edu
Daniel Wasserrab, Universitat Pasau, daniel.wasserrabQuni-passau.de
Stefan Wehr, Universitéit Freiburg, wehr@informatik.uni-freiburg.de
Tobias Wrigstad, Stockholm University, tobias@dsv.su.se

Elena Zucca, DISI - University of Genova, zucca@disi.unige.it

Johan Ostlund, Stockholm University, johano@dsv.su.se

3 Summary of Contributions

There were 20 submissions. Each submission was reviewed by at least 3 pro-
gramme committee members. The committee decided to accept 9 papers.

The workshop was structured as a small conference with sessions of paper
presentations. Fach session specialized in a particular topic. The following sum-
maries were originally written by the session chairs.

3.1 Session 1: Types

The first session of FTfJP was devoted to Types and was chaired by Dave
Clarke (CWI). The three papers represent three of the various trends in type
systems work, namely, understanding concepts from existing programming lan-
guages, transferring constructs from one language (or from theory) to another,
and understanding new type-theoretic constructs in terms of more traditional
constructs.

Nicholas Cameron presented “Towards an Existential Types Model for Java
with Wildcards”, which was joint work with Erik Ernst and Sophia Drossopoulou.
Wildcards were introduced in to Java generics to soften the mismatch between
subtyping and parametric polymorphism. A type system including wildcards has
never been proven sound. This paper formalises wildcards using an extension of
FGJ (featherweight generic Java) with existential types.

The paper proves that the calculus, called 3J, is type sound, and illustrates
how it models Java’s wildcards. 3J is not, however, a full model for Java’s wild-
cards as it does not support lower bounds for wildcards. It turns out that it
cannot easily be extended to deal with lower bounds. The paper discusses how
this issue can be resolved in a type sound way. The model needed to go beyond
the standard existential types model due to peculiarities in Java’s Wildcards.

Philippe Altherr presented “Adding Type Constructor Parameterization to
Java” | which was joint work with Vincent Cremet. This paper presented a gen-
eralization of Java’s generics to enable parametrization by type constructions,
that is, functions from types to types. The extension was formalized as a calculus
called FGJw, which is proven safe and decidable. The extension is motivated by
two examples, namely the definition of generic datatypes with binary methods
and generalized algebraic datatypes (GADTS).

Formal Techniques for Java-Like Programs 103

Type constructors are found in the programming language Haskell, as well
as higher-order logic and other type theories. This paper follows the trend of
transferring ideas from type theory and research programming languages such
as Haskell into mainstream languages such as Java.

Chieri Saito presented “The Essence of Lightweight Family Polymorphism”,
which was joint work with Atsushi Igarashi. The paper discusses the formal
calculus .FJ that was introduced to model lightweight family polymorphism,
a programming style that supports reusable yet type-safe mutually recursive
classes. This style of programming originates in Beta and has received a lot of
attention in recent years.

The paper clarifies the essence of .FJ by providing a formal translation from
.FJ into a variant of FGJ extended with a variant of F-bounded polymorphism
which allows self types to appear in mutually recursive constraints on type vari-
ables. The correspondence between the two languages is achieved without losing
type safety.

3.2 Session 2: Languages and Verification

The second session was chaired by Gary Leavens.

The paper “Separating Type, Behavior, and State to Achieve Very Fine-
grained Reuse,” by Viviana Bono, Ferruccio Damiani, and Elena Giachino
describes a language design that tries to achieve orthogonality in several mecha-
nisms, with the aim of fostering reuse. In particular it tries to separate the mech-
anisms that allow reuse of: state declarations (records), types (interfaces), and
behavior (traits) from each other and from the mechanism that composes these
into objects (classes). In this way the language distinguishes itself from other
advanced languages, such as Scala, in which traits are also types. The paper
describes a calculus, Featherweight Compositional Java. This calculus combines
nominal (by-name) and structural type checking, in that method parameters are
nominally typed and uses of this are structurally typed. Its type system and
a translation that flattens structures into the calculus Featherweight Trait Java
with Interfaces is proved to preserve typings and to be sound.

The paper “Modular Verification of the Subject-Observer Pattern via Higher-
Order Separation Logic,” by Neelakantan Krishnaswami, Lars Birkedal, and
Jonathan Aldrich shows how to use higher-order separation logic to modularly
verify uses of the Subject-Observer pattern. Modularity means that the sub-
ject and observer are hidden from each other, but must not interfere with each
other. Furthermore, different observers may have different invariants. The ap-
proach uses quantification over predicates to hide representations. It also uses
lists of higher-order predicates to maintain a list of the invariants corresponding
to each observer. For reasoning about callbacks, the approach uses hypothetical
separation properties. The paper formalizes the programming language and the
higher-order separation logic. It gives detailed specifications for an instance of
the Subject-Observer pattern, including a client program.

104 J. Boyland et al.

The paper “Automatic verification of textbook programs that use comprehen-
sions,” by K. Rustan M. Leino and Rosemary Monahan address the problem of
automatic verification of generalized quantifiers, such as sum, min, and max. The
paper describes an approach taken in Spec#, a formal specification language
for C#. Spec# has quantifiers like sum {int k in (1:3); k*k} which denotes
1x1+2x2=25. The difficulties in automating this are: (i) how to encode such
generalized quantifiers and comprehensions for an automatic, first-order theorem
prover (such as Simplify), and (ii) what “inductive axioms” generalized quanti-
fiers and comprehensions in a first-order prover. The approach to solving the first
problem is to specify two new function symbols for each kind of quantifier. The
axioms used to solve the second problem make these function symbols synonyms,
but only in one direction, which avoids the problem of recursive loop triggers.
Differences in such axiomatizations affect performance, sometimes dramatically,
and such considerations are described in the paper.

3.3 Session 3: Analysis

This session, unlike the previous session, presented papers for the automatic
analysis of object-oriented programs. It was chaired by Francesco Logozzo.

Manuel Fahndrich gave a talk on a new static analysis that he developed
together with Diego Garbervetsky and Wolfram Schulte. The goal of the analysis
is to check the presence of re-entrant calls on objects for which the invariant
may not hold. The analysis is divided into two stages. First, it uses a modular
point-so analysis to detect re-entrant calls. Then, it performs a simple data-flow
propagation to check whether the invariant of the receiver of a re-entrant call
holds or not. The analysis is supported by an implementation that was able
to find that most re-entrant calls are direct calls. The two main differences of
this work with respect to others presented in the FTfJP’07, but also in the
IWACO’07 workshop, is (i) that the analysis is run on the full program, and (ii)
it does require minimal user annotations.

Patrice Chalin presented the work that Frederic Rioux and himself have con-
ducted on the re-definition of the (concrete) semantics of expressions appearing
in JML assertions. The new semantics is based on the notion of strong validity
which means that an expression is true iff (i) it is defined and (ii) it evaluates to
true. Such a definition implies that when checking dynamically an assertion, it
evaluates to true iff (i) it does not raise an exception (e.g. because a division by
zero) and (ii) it evaluates to true. The implementation is built on the top of the
MultiJ compiler. There are two main advantages of this approach: (i) it provides
a more programmer-friendly semantics of assertions, and (ii) it generates more
compact runtime checks.

In his talk Manuel Hermenegildo presented some ongoing work that he is
doing with his students Jorge Navas and Mario Méndez-Lojo for developing
a generic static analysis framework for the Java bytecode based on Abstract
Interpretation. The kernel of the work is the fixpoint computation engine which is
smart enough to infer non-trivial postconditions for recursive functions. Manuel
illustrated the algorithm, inspired by previous work in Logic programming, and

Formal Techniques for Java-Like Programs 105

he gave a brief demo of the tool. The main difference with other works presented
during the workshop is that this tool (i) is completely automatic, (ii) it is oriented
to the inference of numerical properties to be used for the absence of runtime
errors, and (iii) it is adaptive, in that if information on the caller context is
present, then the analysis makes use of it.

3.4 Session 4: Panel Discussion

In the last session of the workshop, a panel discussion investigated future com-
binations of object-oriented programming, modeling and verification. The panel
consisted of four experts with different foci in the field:

— Jonathan Aldrich: Architectural aspects

— Manuel Hermenegildo: Static analysis

— Manuel Fahndrich: Verification, object-oriented programming
— Gary T. Leavens: Modeling languages, dynamic checking

The panel was moderated by Arnd Poetzsch-Heffter. In the following, we shortly
summarize the initiating statements of the panelists and the discussion.

Architectural aspects. Jonathon Aldrich summarized central challenges for the
verification of object-oriented programs, in particular aliased state, higher-order
and event-based code, inheritance, subtyping, and concurrency. He illustrated
the problems to find bugs using a graphical text editor as example: a misbe-
havior in a text area may result from a long event chain touching many parts
of the implementation. A still open question is whether current techniques to
modularity like separation logic and ownership disciplines are flexible enough
to handle such scenarios. It will be important to use software architecture as
a backbone to integrate code-oriented modularization like ownership structures
with other techniques like permission-based reasoning and event tracking.

Static analysis. As central goals, Manuel Hermenegildo stressed the need to de-
velop improved programming environments. They should increase programmer
efficiency and better integrate verification, analysis and optimization into every-
day programming. He sketched the CiaoPP approach in which static analysis,
partial evaluation, theorem proving and runtime test generation works hand in
hand. It will as well be important to be able to ship the derived abstractions
together with the program in the sense of an “abstraction carrying code”. Lan-
guages with a higher abstraction level will not only be needed to simplify the
programming task, but as well to integrate programs, abstract interpretation
results and other program properties.

Programming and verification. Manuel Fahndrich opened up the discussion to-
wards new language designs. With software systems increasing in size and a
hardware trend to multi-core architectures, it will become crucial to be able to
develop less buggy and highly concurrent programs in the future. It might be
questioned whether the OO paradigm gives a sufficient answer to this challenge:

106 J. Boyland et al.

Current support for alias control and referential transparency is weak in OO
languages; and OO concepts and constructs for concurrency are fairly low level.
Functional programming provides better techniques to control mutability, and
simplifies verification and concurrent programming. An interesting trend that
might combine the programming paradigms are small components encapsulat-
ing data and control.

Better help for the programmer. Gary T. Leavens added two further issues to
the discussion. Firstly, he reflected on how we can better help the programmer.
Instead of straitjacketing ordinary programmers with difficult techniques and
theories, academia should package their techniques and tools according to the
programmer’s needs. In particular, support should be better aligned with the
design goals of the programmer. For example, if security is an issue, specific sup-
port is needed for this requirement; and such a support can crosscut different
areas of technology. Gary Leaven’s second issue concerned the extension and in-
tegration of new trends and developments in programming and formal methods.
E.g. how can XML data handling be integrated into interface specifications, how
can formal techniques be applied to aspect-oriented programming and highly dy-
namic programs? In addition, we still have to realize the treatment of temporal,
time and space properties in the current verification and tooling landscape.

During and after these statements we had a lively discussion: How should
strong, weak and no typing be used and integrated into programming and spec-
ification? Is functional programming a key to meet the challenge of correct con-
current programs? Although the emotions underlying such questions in the last
century could still be felt, the bottom line of the discussion seemed to be that
a well-engineered combination of the developed techniques is the challenge of
today and the way to go.

4 Conclusions

Object-oriented programming in the style of Java or C# is now mainstream.
Thus the topic of this workshop, applying formal techniques to these languages,
is more important than ever. We are seeing large-scale practical efforts, not
least JML and Spec#, being used by growing numbers of people. In this way
the hard work of researchers in formal techniques is having a broad impact in
programming. It is a privilege to be part of this process.

Acknowledgments

As chair, T (John Boyland) thank the providers of EasyChair which made chair-
ing the workshop much easier than if I had to do everything myself, especially
while temporarily residing in China. Thanks also to the programme committee
members who put in a lot of work in a very tight reviewing schedule, and for
the productive round-the-globe email discussion.

Formal Techniques for Java-Like Programs 107

I thank Nanjing University and the State Key Laboratory for Novel Software
Technology for hosting my stay in China and helping put together the technical
report of contributions.

‘Web Resources

The homepages of the programme committee members and all the individual
papers are available from the workshop web site:

http://www.cs.uwn.edu/faculty/boyland/ftjp/index.html

Roles and Relationships in Object-Oriented
Programming, Multiagent Systems and Ontologies

Report on the 2™¢ Workshop on Roles and Relationships at
ECOQOP 2007

Guido Boella® and Friedrich Steimann?

! Universita di Torino, Italy
guido@di.unito.it
2 Fernuniversitit in Hagen, Germany
steimann@FernUni-Hagen.de

Abstract. This report describes the “Roles‘07 — Roles and Relationships” work-
shop held at ECOOP ‘07 in Berlin on July 30 and 31, 2007. The aims and organiza-
tion of the workshop are described, and the main contributions of the presentations
and invited talks are summarized, so to have a useful survey of current issues in
the field. The description of the discussion and conclusions end the paper.

1 Introduction

The notion of role is almost ubiquitous in computer science: it occurs in fields such as
conceptual modeling, programming languages, software engineering, coordination lan-
guages, database systems, multiagent systems, knowledge representation, formal ontol-
ogy, computational linguistics, and security. Also, it appears to be indispensable outside
computer science: fields like sociology, cognitive science, organizational science, and
linguistics make heavy use of it. In fact, it seems that like objects and relationships,
roles are so fundamental a notion that they should be granted the status of an ontologi-
cal primitive.

The definition of roles inherently depends on the definition of relationships. With the
advent of Object Technology, however, relationships have moved out of the focus of
attention, giving way to the more restricted concept of attributes or, more technically,
references to other objects. A reference is tied to the object holding it and as such is
asymmetric — at most the target of the reference can be associated with a role. This
is counter to the intuition that every role should have at least one counter-role, namely
the one it interacts with. It seems that the natural role of roles in object-oriented designs
can only be restored by installing relationships (collaborations, teams, etc.) as first-class
programming concepts.

By contrast, the relational nature of roles is already acknowledged in the area of
Multiagent Systems, since roles are related to the interaction among agents and to com-
munication protocols. However, even in this area there is no convergence on a single
definition of roles yet, and different points of view, such as agent software engineering,
specification languages, agent communication, or agent programming languages, make
different use of roles.

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 108 2008.
(© Springer-Verlag Berlin Heidelberg 2008

Roles and Relationships in Object-Oriented Programming 109

In computer science, the discussion about roles started in the 1970s with Bachman
and Daya [[]], and since then, it has kept recurring to the attention of the research com-
munity. Interestingly, Bachman developed his Role Data Model as an alternative to the
then emerging Relational and Entity-Relationship Data Models [2], fully acknowledg-
ing the dependency of roles on relationships. More recently, roles have been used in var-
ious areas to handle behavior and interaction, for example, role based access control in
security with the RBAC model [3]], collaboration roles in UML to describe the interac-
tion among classes [4]], channels connecting components in coordination languages [3]],
the separation of concerns to describe the interaction properties of objects in new con-
texts in programming languages [6]], etc. With the rise of the internet, new communi-
cation possibilities and interactive computing created a new demand of research about
roles, for example, in organizations in open multiagent systems, in role based program-
ming languages, in using roles for the composition of web services, and in defining
roles in standards for interoperability.

Notwithstanding this revival of the research about the notion of role, little agreement
seems possible among the proposals in the different fields. This lack of agreement leads
to considerable problems with transferring the results from one area to the other, even
inside a single area, a consequence which is unacceptable in times in which the sharing
of knowledge and standardization alone represent added value in many fields. The likely
reasons of these divergences are that many papers on the notion of role fail to have an
interdisciplinary character, that much work proposes new definitions of roles to deal
with particular practical problems, and that role seems an intuitive notion which can be
grasped in its prototypical characters, yet is really an elusive one when details must be
clarified. Few proposals, like Steimann [[7]] or Masolo et al. [8]], have a more general
attitude and try to find a problem independent definition of the role concept and its
formalization.

The recognition of the need of a wider agreement on roles lead Guido Boella to orga-
nize — together with James Odell, Leendert van der Torre, and Harko Verhagen — the
first Roles event, titled “Roles, an Interdisciplinary Perspective - Roles‘05” [9]]. To ac-
knowledge its interdisciplinary character, it was organized as an American Association
for Artificial Intelligence (AAAI) Fall Symposium and held on November 3-6, 2005 at
Hyatt Crystal City in Arlington, Virginia (http://normas.di.unito.it/zope/roles05). The
call for papers of Roles 05 produced 30 submissions, of which 22 were presented at the
workshop. From the presented papers five were selected for a special issue in Applied
Ontology — An Interdisciplinary Journal of Ontological Analysis and Conceptual Mod-
eling, representing the different areas involved in the workshop: ontology, programming
languages and multiagent systems. Moreover, the article of Friedrich Steimann [2], the
invited speaker of the workshop, complemented the other ones by presenting an histor-
ical perspective on the subject, analysing the seminal work of Bachman and Daya [1]]
on the Role Data Model for databases. No other previous event focussed on roles
only, even if some other workshops offered the environment for discussing roles, like
AOSE*00-‘07, CorOrg‘05,°06, NorMas‘05,07,°08, VAR ‘05, COIN‘06,°07. However,
they either did not have an interdisciplinary character, or they discussed roles from a
specific perspective, for example, NorMas is focused on normative systems.

110 G. Boella and E. Steimann

Like its predecessor Roles‘05, Roles‘07 aimed at gathering researchers from dif-
ferent disciplines to foster interchange of knowledge and ideas concerning roles and
relationships, trying to converge on ontologically founded proposals which can be ap-
plied to programming as well as agent languages. Roles‘07, organized in the context
of the ECOOP*07 conference, attracted 10 submissions (of which 8 got accepted), 10
presentations, and about 30 participants. Invited talks were held by one of the fathers of
the notion of roles in modelling languages, Trygve Reenskaug, and by one of today’s
most active researchers in the study of relationships, James Noble. The proceedings
of the workshop are available at http://iv.tu-berlin.de/TechnBerichte/2007/2007-09.pdf,
the workshop website is http://normas.di.unito.it/zope/roles07.

The scope of Roles‘07 was outlined by the following list topics:

— Roles as first-class constructs in programming, modelling, ontologies, and multia-
gent systems.

— Relationships as first-class programming constructs.

— Applications that would profit from roles and relationships.

— Patterns dealing with the realization of relationships and roles.

— Roles in foundational ontologies and applicative ontologies.

— Roles in models (e.g. UML) and domain-specific languages.

— Roles in multiagent systems design, specification and programming.

— Experience reports with role-oriented approaches.

— Existing and new programming constructs related to roles.

— Literature surveys on roles.

— Reports on roles from other disciplines, like sociology, organizational theory, lin-
guistics, etc.

2 Organizers

Guido Boella (guido@di.unito.it)

Guido Boella received the PhD degree in Computer Science at Universita di Torino in
2000. He is currently professor at Dipartimento di Informatica of this university. His
research interests include programming languages, multiagent systems, in particular,
normative systems, institutions and roles using qualitative decision theory. He organized
the workshops on normative multiagent systems (NorMas‘05,07,°08), on coordination
and organization (CoOrg*‘05,°06), the AAAI Fall Symposium on roles Roles‘05 and the
COIN@ECAI‘06 workshop. He developed the programming language powerJava, an
extension of Java with roles.

Steffen Gobel (steffen.goebel @sap.com)

Steffen Gobel works as a senior researcher in the Software Engineering & Architecture
program at SAP Research CEC Dresden. He received his Diploma and his doctoral
degree in computer science from Technische Universitit Dresden. His main research
interests are model-driven development, software product lines and component-based
software engineering.

Friedrich Steimann (steimann@acm.org)
Friedrich Steimann is currently a full professor at the Fernuniversitit in Hagen, Ger-
many. He heads the department of Programming Systems and conducts research on

Roles and Relationships in Object-Oriented Programming 111

object-oriented programming concepts, software modelling, and development tools. He
is a leading researcher on roles in object orientation. He has a past in computational
linguistics and medical informatics.

Steffen Zschaler (sz9 @inf.tu-dresden.de)

Steffen Zschaler graduated from Technische Universitidt Dresden in 2002, where he
is now working as a research assistant. His main research interests are model-driven
development, non-functional properties and component-based software engineering. He
is currently involved in the Modelplex research project.

3 Contributions of the Workshop

The three different sessions in which we can ideally organize the presentations are: roles
and programming languages, roles and relationships, and roles and ontologies. For each
one of them, we illustrate the main issues faced by the presentations.

3.1 Roles and Programming Languages

BabyUML - Roles and Classes in Object Oriented Programming [10]. The value of a
system is greater than the sum of its parts; the system organization giving the added
value. Trygve Reenskaug’s talk shows how a system description can be split into state
and behavior parts. Despite being one of the inspirators of UML, Trygve Reenskaug
is still unsatisfied by the modelling language. So it is proposing an alternative project
named BabyUML. The project goal is to create a programming environment with ex-
plicit specification of system state and behavior.

Trygve Reenskaug starts from a quotation of Steven Pinker’s “How the Mind
Works” [11]]: he claims that the meaning of a system comes from the meaning of its
parts and from the way they are combined. Objects encapsulate state and behavior. Ob-
ject state is represented in the object’s instance variables. Object behavior is specified
in the object’s methods. The execution of a method is triggered by the object receiving
a message. The binding of message to method is dynamic and depends on the imple-
mentation of the receiving object. But the value of a system is greater than the sum of
its parts. The properties of a system are similar to the properties of an unattached ob-
ject. System state is the accumulated state of its objects and their associations. System
behavior is triggered by messages that the system receives from its environment and is
accomplished through an organized process of message interaction between its objects.

Current mainstream programming languages are class oriented; they specify sets of
objects with common properties. Class based languages work well in simple cases;
but they are less than ideal in complex cases where the system as a whole tends to be
hidden among the details of the classes and methods. In this article, Trygve Reenskaug
remedies this deficiency by showing how class centred programming can be augmented
by role centred programming where system behavior is specified explicitly in terms of
collaborations and roles.

The role is a slippery concept. Roles cannot be defined by their shape or their consti-
tution, only by what they do in the context of a system. The essence of object orientation
is that in a system objects collaborate to achieve a common goal. Roles are references to

112 G. Boella and E. Steimann

participating objects; each role represents the contribution these objects make towards
a system goal. The concept of role conforms to the common usage of the word:

— A role represents a functionality.

— This functionality can be utilized in its collaboration with other roles.

— A role is bound to one or more objects selected from a universe of objects. These
selected objects are called the players of the role.

— A role delegates the performance of its functionality to its players.

— A role specifies requirements for its players. An important property is the set of
messages that its players must understand.

— The required properties can be implemented by several classes so the players need
not be instances of the same class. Different objects can thus perform the same role
in different ways.

A collaboration is a structure of interconnected roles that enables the system to
perform one or more tasks. First, a collaboration describes a structure of collaborat-
ing roles, each performing a specialized function, which collectively accomplish some
desired functionality. Second, a collaboration structure constitutes a graph where the
nodes are roles and the edges are the message interaction paths.

One of the crucial points in this work is the link between role and objects. It is
annotated by select from; this signifies that objects are dynamically selected from a
set of relevant objects to play the roles. Many different selection mechanisms can be
used. These methods dynamically select the appropriate player objects. In principle,
the methods should perform the selection on each call to ensure up-to-date mapping.

Roles for Robots - Roles and Self-Reconfigurable Robots [12]. A self-reconfigurable
robot is a robotic device that can change its own shape. Self-reconfigurable robots
are commonly built from multiple identical modules that can manipulate each other
to change the shape of the robot. Programming a modular, self-reconfigurable robot is
however a complicated task: the robot is essentially a real-time, distributed embedded
system, where control and communication paths often are tightly coupled to the current
physical configuration of the robot, control is distributed across the modules that consti-
tute the robot constraints on the physical size and power consumption of each module
limits the available processing power of each module.

The issue of providing a high-level programming platform for developing
controllers remains largely unexplored. To facilitate the task of programming modu-
lar, self-reconfigurable robots, Nicolai Dvinge, Ulrik P. Schultz, and David Christensen
developed a declarative, role-based language RAPL, for the ATRON modular, self-
reconfigurable robot, that allows the programmer to associate roles and behavior to
structural elements in a modular robot.

Roles provide the abstraction necessary to focus on the behavior of a specific module
in a given context. The conceptual view of a role is that it defines the module structure
and the active and reactive behavior of each module in a robot. There is a one-to-one
mapping between a role and a module, but modules can change their roles (and thus
their behavior) as a reaction to messages from other modules or internal events.

An ATRON robot as a whole is implicitly assigned a role using the object oriented
concept of a whole-part structure. Behavior for the robot is declared for each individual
role. The functionality of the whole and the role that it can play is thus created in

Roles and Relationships in Object-Oriented Programming 113

coordination between the individual modules, corresponding to how the control of a
modular robot necessarily must be implemented in practice.

A Metamodel for Roles: Introducing Sessions [13]. Role is a widespread concept, it is
used in many areas like multiagent systems, databases, programming languages, orga-
nizations, security and OO modeling. Unfortunately, it seems that the literature is not
actually able to give a uniform definition of roles, there exists several approaches that
model roles in many different (and opposite) ways. Valerio Genovese’s aim is to build a
formal framework through which describe different definitions appeared in the literature
or implemented in computer systems by means of different configurations of parame-
ters. In particular, he gives a new role’s foundation introducing sessions, which are a
formal instrument to talk about role’s states and he shows how sessions may be useful
to model relationships. In the presented work it has been shown how the great majority
of proposed role’s accounts can be unified within a general infrastructure which is based
on 4 basic notions: Role, Player, Context, Session (where is kept the state of a specific
interaction), and where the role notion is pivotal in the interaction of two entities: one
that offers the role (context) and the other one that plays it (player). Exploiting the
session’s formalization, it has been stressed how roles can be employed in specifying
relationships in a rich and complete way.

Short presentations. Besides the presentations of papers we had two short presentations.
The first one is by Stephan Herrmann, about the definition of a metamodel for the
ObjectTeams/Java language he developed [14]]. He starts from an intuition of Friedrich
Steimann, who in [2] proposes as a criterium for evaluating role models the possibility
to use the role model as a metamodel of itself (see Section[5.1)).

During the development of ObjectTeams/Java the author developed several meta-
models as a way to facilitate implementation in Java. While doing so he fell into the
trap of a naive metamodel which contains three fundamental classes: Team (the con-
text of a role), Role and Base (the player of a role). While it looks natural at first, this
approach fails to support some combinations, where Teams play roles themselves or
Teams contain other Teams. These combinations require a model, where Teams, Roles
and Bases are not disjoint sets, but actually each intersection is populated with legal
elements, too. Since overlapping classes are problematic in object-oriented design, the
author chooses to use Object Teams as the language for the metamodel. The central
idea behind this model is to leave the metaclass Class untouched, i.e., to refrain from
sub-classing Class to produce Team, Role and Base. Instead the model identifies addi-
tional properties that can be attached to a Class if it appears in a certain context. Classes
appearing in a Collaboration may play either the role of the Collaboration’s Team, or
they may play a role of a Role within the Collaboration. This models the fact that Teams
and Roles only occur in the context of a Collaboration, where each Collaboration has
exactly one defining Team and any number of interacting Roles.

The second presentation is by Roberto Grenna, showing his work with Luisa
Leonardelli. This work is based on the intuition of Steimann that design patterns
are inherently based on roles, and on the implementation of a role based programming
language, powerJava [[13]]. The target was realizing the implementation in powerJava for
some design patterns: the State and the Mediator. The primitives offered by powerJava
allows the programmer to use roles in the implementation of the patterns. In particular,

114 G. Boella and E. Steimann

the advantages are that the number of parameters decreases, since roles use the principle
of Java inner classes, the number of written classes is less than in the correspondent Java
code, and when a role is defined, it can be played by each class implementing the re-
quirements needed for that role. However, it is difficult to give a precise measure of the
advantages of using roles in design patterns besides the improvement of the conceptual
clearness.

3.2 Roles and Relationships

Member interposition: Defining Classes [16]. The collaborations between objects are
the key to understand large object oriented programs. Software systems do not accom-
plish their tasks with a single object in isolation, but only by employing a collection
of objects. Conceptual modeling languages, such as the Unified Modeling Language
(UML) and the Entity-Relationship (ER) model, allow explicit representation of object
collaborations through associations and relationships, respectively.

Today’s languages allow the description of objects through the programming lan-
guage abstraction of a class, yet they lack a peer abstraction for object collaborations.
Programmers must resort to the use of references to indicate collaborations and thereby
often hide the intent and, at the same time, further complicate any analysis of a program
since references are a powerful, all encompassing programming construct. To use Rum-
baugh [[17]]’s words, “class-based object oriented implementations of object collabora-
tions hide the semantic information of collaborations but expose their implementation
details”.

As classes allow the description of a collection of individual objects, relationships in
relationship-based language proposed by Stephanie Balzer and Thomas Gross allow the
description of a collection of groups of interacting objects. The description involves the
declaration of attributes and methods. Relationships indicate the classes of which the
interacting objects are instances to delimit the scope of the collaboration. Relationship-
based languages also allow the declaration of multiplicities (consistency constraints).

Roles emerge from relationships. The participants of a relationship declaration can
be named to indicate the conceptual role the particular class plays in the relationship.
Some properties of objects only apply when the object is fulfilling a particular role.

Member interposition is a mechanism proposed by the authors to accommodate
relationship-dependent properties of objects, without resorting to inheritance and role
classes. For example, consider the relationship Assist between a collaborating
student and a course. If the attribute instructionLanguage of the role
teachingAssistant is interposed, then each student uses the same language in
all the courses he assists. If, instead, the attribute is not interposed, the attribute de-
scribes the language used by the student in each course it teaches, and it can differ from
course to course.

Whereas an interposed member describes a class that plays a particular role in a re-
lationship, a non-interposed member describes the collaboration that exists between
the participants of a relationship. The authors also refer to interposed members as
participant-level members and to non interposed members as relationship-level mem-
bers. Like non-interposed members, interposed members are part of the interface

Roles and Relationships in Object-Oriented Programming 115

of their defining relationships (and not part of the interface of the classes they are inter-
posed into).

Relationships define roles, objects offer them [[18]. Matteo Baldoni, Guido Boella and
Leendert van der Torre show how to use the powerJava language (an extension of Java
with roles) to model relationships with roles. The powerJava approach is based on the
definition of roles as affordances [19]]. Inspired by research in cognitive science, this
view sees the properties (attributes and operations) of an object as something not inde-
pendent from whom is interacting with it. In this way, an object affords different ways
of interaction to different kinds of objects. The idea behind roles as affordances is that
the interaction with an object does not happen directly with it by accessing its public
attributes and invoking its public operations. Rather, the interaction with an object hap-
pens via a role: to invoke an operation, it is necessary first to be the player of a role
offered by the object the operation belongs to. The roles which can be played depend
on the properties of the role player (the requirements), as it follows from the definition
of affordance. The language extension implements roles as inner classes, so to associate
with them attributes and methods, which share the same namespace of the outer class
and of other roles: thus, roles are instances having a different identity respect to the
players that play them.

Baldoni et al. shows how the relationship as attribute pattern to model relation-
ships in OO can be extended with roles, thus endowing the relationship with a state and
a behavior, albeit distributed in the two roles composing the relationship. In [18]] the au-
thors show how the relationship object pattern can be extended with roles as well. The
authors start from an intuition of Steimann [[7] who proposes to model roles as classifiers
related to relationships, but such that these classifiers are not allowed to have instances.
In Java terminology, roles should be modelled as abstract classes, where some behavior
is specified, but not all the behavior, since some abstract methods must be implemented
in the classes extending them. These abstract classes representing roles should be then
extended by other classes in order to be instantiated. However, given that in a language
like Java multiple inheritance is not allowed, this solution is not viable, and roles can
be identified with interfaces only.

In [18], the authors overcome the problem of the lack of multiple inheritance, by al-
lowing objects participating to the relationship to offer roles which inherit from abstract
roles related to the relationship, rather than imposing that objects extend the roles them-
selves. The advantage of this solution is a tighter coupling between the relationship and
its participants, since the roles belong both to the namespace of the relationship and to
the namespace of the player, thus having access to the private state of both of them.

3.3 Roles and Ontologies

Role Representation Model Using OWL and SWRL [21]]. Roles are very important in
ontology engineering. Although the ontology language OWL is a standard, considera-
tion about roles is not enough. This fact can cause to decrease semantic interoperabil-
ity of ontologies because of conceptual gaps between OWL and developers who need
roles. In this paper Kouji Kozaki, Eiichi Sunagawa, Yoshinobu Kitamura, Riichiro Mi-
zoguchi merge an ontological analysis of roles with practical considerations about de-
signing tools for building ontologies, applying it to the OWL language. The most novel

116 G. Boella and E. Steimann

element of their model is the notion of role holder, an abstraction of a composition of a
role-playing entity with an instance of a role concept. In turn, the role concept instance
can exist only in presence of an instance of the context the role is associated with.

Roles (in the sense of role concept instances) can exist without a player, due to their
relation with a context. Conversely, some contexts exist only in presence of the roles
which compose the context. For example, a marriage exists only as far as both the roles
of wife and husband exist. As Loebe [22] does, the authors provide a classification of
roles basing on the type of context they are related to. Besides relational roles, proces-
sual roles and social roles, Hozo distinguishes action related roles, attribute roles and
composite roles. Composite roles allow to model a role like teacher, which includes
both the role of staff member of a school and of agent of a teaching activity, and, thus,
they depend on multiple contexts at a time. Details can be found in [23]].

The authors represent the Hozo role model in OWL. E.g., hozo:BasicConcept class,
hozo:RoleConcept class and hozo:RoleHolder class express basic concepts, role con-
cepts and role-holders respectively. hozo:playedBy property represents a relation be-
tween classes of role concept and classes of potential player. Besides concept definitions
the authors give rules which are applied into classes and properties. They are imple-
mented as SWRL rules. Rules are not only applied to instance models for inference, but
also to imply the policies on using the classes and properties underlying Hozo.

The distinction between role concepts and role-holders is realized via the category
hozo:RoleHolder. Role-Holders are described with the property hozo:inheritFrom: it is
used for representing that a role-holder inherits definitions both from the role concept
and its player. But the property does not imply inheritance of identity, and in that respect
hozo:inheritFrom differs from rdfs:subClassOf.

Towards a Definition of Roles for Software Engineering and Programming Languages
[24]). Frank Loebe describes an analytic, ontology-oriented view on roles, starting from
the plurality of views and definitions that role has in literature. A major goal of the work
is the provision of a role definition which maximizes the coverage of applications of the
term “role”. To the extent possible this should be independent from specific application
areas, spanning from conceptual modeling to software engineering to linguistics, etc.
This leads to a very general, yet weak, analytical definition for the notion of role:

“Definition 1. A role is an entity which is dependent on two other entities, referred
to as the player of the role and the context of the role.”

The author classifies three kinds of roles according to the different kinds of contexts
they belong to. Roles are parts of contexts (in some sense of the term) and the contexts
emerge from the existence of the roles, in a mutual existential dependence. Three kinds
of contexts are considered in the classification of role, which determine different playing
relations:

— Relational role: corresponds to the way in which an argument participates in the
context of some relationship; e.g., two as a factor of four refers to a relationship.
Relational roles are special properties, and the “plays” relationship between entities
and relational roles is thus subsumed by the “has-property” relation.

— Processual role: corresponds to the manner in which a player behaves in the context
of some process (i.e., it participates in the process): e.g., John as the mover of some

Roles and Relationships in Object-Oriented Programming 117

pen is categorized as a processual role. Processual roles are parts of processes, and,
therefore, processes themselves.

— Social role: corresponds to the involvement of a social object within the context of
some society; e.g., a student in a university. Social roles are often defined with their
own properties, relations and processes in which they (may) participate (confirm-
ing the view of roles as “patterns of behavior”). This means that social roles are
considered as objects.

Theories of programming and software engineering, in different shapes like object-,
agent-, or aspect-orientation, form a major area of using and applying roles in computer
science. In this context it does not appear reasonable to argue for the direct adoption
of Definition 1 above, which would be too weak while the broadness of coverage is
not necessary. Most occurrences of roles in this area seem to require properties for
roles and involvement in complex systems, closely resembling social roles from above
(a slight generalization to non-social objects may be required). For a common use of
“role” in this area, Loebe proposes the following adaptation of Definition 1 as a working
hypothesis:

“Definition 2. A role R is an entity which mediates between a context C, compre-
hended as a system or a society of interrelated entities E1, Eo,..., and exactly one of
these entities, E;. R depends on both, E; and C, and it exhibits specific properties and
behavior.”

Note that this definition exhibits some similarity to the UML 2.0 definition of role [4}
p-575]: “Role: A constituent element of a structured classifier that represents the ap-
pearance of an instance (or possibly, a set of instances) within the context defined by
the structured classifier.”

4 Invited Talks

4.1 The OOram Software Engineering Method

For this workshop Trygve Reenskaug, one of the fathers of object orientation and
ideator of the model-view-controller pattern for GUI software design in 1979, while
visiting Xerox Parc, resurrected the software for modelling with the OOram Software
Engineering Method. OOram is a precursor of the UML modelling language, but it is
still impressive the simplicity it offers to model a system in terms of roles, only later
passing to the design of classes.

On his webpage (http://folk.uio.no/trygver/) Trygve Reenskaug says:

“Roles are about objects and how they interact to achieve some purpose. For thirty
years | have tried to get them into the main stream, but haven’t succeeded. I believe the
reason is that our programming languages are class oriented rather than object oriented.
So why model in terms of objects when you cannot code them? And why model at all
when you cannot keep model and code synchronized?”

So the discussion after his invited talk could not but lead to the question: what are
the reasons of the difficulty of introducing the notion of role in the object oriented com-
munity? Under the light of his long experience in proposing roles as a fundamental

118 G. Boella and E. Steimann

concept, Trygve Reenskaug’s answer is the cognitive difficulty which people experi-
ences in conceptualizing both the notions of class and role. Witness the fallacy, made
also in prominent books about OO, of saying that classes send or receive messages.
Only objects send and receive messages and, if a more abstract notion is needed to pre-
cise a model, we should better say that roles send and receive messages. Instead, we
keep teaching to students in programming language courses to think only in terms of
classes and objects as the only elements when designing a program, thus perpetuating
the difficulty of using roles.

He considers, however, a positive evolution in OO the recent debate about the no-
tion of trait, which seems to be able to decompose a class into the different behaviors
required by the specific roles that its instances can play.

Finally, Trygve Reenskaug gives us the explanation about the genesis of collabora-
tion roles in UML. He was not directly involved in the standardization of this part, and
he does not approve the idea of roles as classifiers in UML 1.0. He considers UML
2.0, where roles are properties through which the interaction between two objects takes
place, an improvement with respect to UML 1.0.

4.2 Where Are the Relationships?

James Noble starts from a quotation about the programming language Smalltalk: “a
program ... a community of communicating objects”. Thus, the question of his talk
becomes: “But where are the relationships?”.

The need of introducing the notion of relationship as a first class citizen in Object
Oriented programming, in the same way as this notion is used in OO modelling, has
been argued by several authors, at least since Rumbaugh [I7]]: he claims that relation-
ship are complementary to, and as important as, objects themselves. For this reason,
they should be available in programming languages too, and not only in modelling lan-
guages, like UML or ER, either as primitives, or represented by means of suitable pat-
terns. Noble proposed two main alternatives for modelling relationships by mean
of patterns: the relationship as attribute pattern, reducing the relationship to references,
and the relationship object pattern, introducing a new class to represent the relationship.
Each of these two solutions have pros and cons, as discussed by Noble [23]].

However, we would like to have relationships as a real programming primitive. Many
languages offer such primitives: Two-way Pointers, JavaFX, Rell Relationships, RJ
Relationships.

These solutions do not capture all the characteristics we would like to have in a
relationship primitive; first, it should be abstract: its implementation is encapsulated.
Second, participants and clients should be decoupled from implementation, so to have
polymorphism and relationship interfaces. Third, to have reusability, relationships
should not depend on participants and multiple instantiation of relationships and par-
ticipants should be possible. Fourth, there should be compositionality, so to build new
relationships from old ones. Finally, separation of concerns should hold: participants
should be reusable without the relationship and reusable without each other.

These properties are satisfied by the Relationship Aspect Library proposed by No-
ble [26]. This proposal, however, does not satisfy some other requirements. For exam-
ple, Balzer et al. allows to add invariants to relationships, JQL and RAL

Roles and Relationships in Object-Oriented Programming 119

allow to access the relationships of databases. In summary, the hypothesis is:
Relationship = Tuples + Roles + Extents. Where, tuples are associa-
tions between participating objects, per-tuple data and behavior are classes, per-parti-
cipant data and behavior are roles and collections of tuples are the extents.

This raises the question: what comes first? relationships or roles? Noble’s hypothesis
is that roles are relationship monopoles. A role provides behavior - perhaps with some
state. But it makes sense only in the context of a relationship - where the object is
playing that role. Thus, support for relationships should precede the support for roles.

5 Discussion

5.1 The Metarole Challenge

In his presentation titled “Towards a Role Manifesto”, Friedrich Steimann made the
point that if the attendees agreed on his position that the role concept deserves the status
of an ontological primitive, roles should be found in the metamodel of any modelling
formalism offering roles. According to Steimann’s argumentation, this ruled out the
role-as-adjunct-instance representation of roles, since this capture, like the Role Object
Pattern, resorts to roles itself (namely the Role role and the Subject role), starting an infi-
nite regress. In fact, so Steimann argued, any metamodel introducing the notion of roles
(which a metamodel should do if role is to be regarded an ontological primitive) while
at the same time resorting to the concept of role should use the very modelling construct
it defines, or it raises doubts of the so defined role construct being the acclaimed primi-
tive. Because roles are tied to relationships and metamodels without relationships seem
unthinkable, any metamodel will also use roles, and the role concept the metamodel de-
fines had better be (very similar to) the one it uses. Otherwise, the question why the one
it uses is unsuitable for the modelling language it defines must be answered. Steimann
conceded that this still leaves room for using the role-as-adjunct-instance approach to
representing roles on the model level, but made clear that this capture cannot be the
ontological primitive being sought for.

5.2 Group Discussion

Following Steimann’s presentation, a discussion was started based on the following
questions:

— Roles and state: Does each instance of role playing come with its own state? Or is
this state part of the relationship? Does playing a role alone contribute to the state
of an object?

— Role and relationship: Can roles be viewed independently from relationships?

— Composability of collaborations: Can a system be lumped together as a set of col-
laborations? If not, what else needs to be provided?

— Role interference: How can we deal with the fact that an object participating in

several collaborations can change its state in unpredictable manners (as seen from

each collaboration)?

Why don’t current programming languages come with a role construct?

120 G. Boella and E. Steimann

To address these and other questions, the participants divided into four groups ac-
cording to their different perspectives:

1. Ontology group (Kouji Kozaki, Frank Loebe, and Riichiro Mizoguchi): How are
roles defined in ontologies? Which are their properties? Are roles an ontological
primitive? In the ontology community there is an increasing consensus towards the
idea that roles are entities (also called qua entities) which depend not only on the
player of the role but also on a context. In fact, discussants agreed on the idea that
the relationship of role to context is more prominent than that to role player and
that roles can exist in some cases even without their players.

2. Multiagent systems group (Guido Boella and Thibaud Brocard): How are roles
used in multiagent systems? Which is the relation between roles and organizations?
Which are the properties attributed to roles in such field? The main debate in the
multiagent community is whether to use roles as first class entities at runtime or
only as a modelling concept. Recent works are leaning towards the first position. In
this field, the concept of role is strictly related to the notion of organization which
provides the context of the role. Roles are associated not only with a state and
behavior but also with obligations, permissions, and institutional powers.

3. Roles and relationships group (Stefanie Balzer, Valerio Genovese, and Ulrik
Schultz): Which is the relation between roles and relationships? Which of these
notions come first? Can roles be reduced to relationships or vice versa? Roles are
a promising abstraction when we have to understand the behavior of large systems.
Roles are dependent on collaborations, and they are at the core of the answer to the
question: how to compose collaborations safely? Roles belong to collaborations
and players can be seen as a constellation of the roles they play. The interaction
inside the collaboration happens via the roles played by objects. Roles, since they
depend on the collaboration, can exist even detached from their players.

4. Roles in modelling and programming languages group (Uwe Assmann and Trygve
Reenskaug): Which is the role of roles in modelling and programming systems?
The result of the discussion goes against the position of the invited talk of James
Noble: roles have priority over relationships. To summarize, roles can be seen from
two different and opposite points of view, depending on how they are related with
relationships. In the first view, roles are simply labels of their players in the relation-
ship. Whereas, in the second view, roles identify a state of the particular interaction
they describe, and they have an identity. In this approach, it is possible to extend the
interaction capabilities of the players adding attributes and behavior, or also unify-
ing the state of the interaction within a single entity (the relationship). Of course,
with this approach some problems arise as concerns the coherence of the states of
the two roles. The problem of roles and collaborations should be faced by studying
respectively, the structure of the systems, its invariants and then its behavior, like
proposed in the metamodel of roles of Genovese [13].

Friedrich Steimann as the moderator tried to reach a common agreement among the
different groups, but the result was that the different communities are still on diverging
positions. Moreover, the moderator had to accept that the discussants all insisted on
roles having their identity separated from that of the player, that in fact roles can even
exist without a player.

Roles and Relationships in Object-Oriented Programming 121

6 Conclusions

While relationship is a widely accepted notion, indeed one whose definition is (except
perhaps for small variations) clear and generally agreed upon, role is still not. With
this workshop, we tried to make the unequivocalness of the relationship concept carry
over to the role concept, by putting the inherent relatedness of the two into focus. To a
certain extent, this approach has failed: it seems that the traditional differences of the
role conceptions created by the different disciplines are stronger than the commonali-
ties suggested by the fact that the very concept of role is meaningless without that of
counter role, and thus without relationship. To a certain extent, however, it has also suc-
ceeded: it showed that all application scenarios in which roles are identified and used
are sufficiently similar to agree on its reason for existence and its general purpose (but
not its representation!), and that there is a common vocabulary in which the differences
can be formulated.

Acknowledgments

We first of all would like to thank the two invited speakers Trygve Reenskaug and James
Noble for their stimulating talks, and all the participants of this workshop. Moreover,
we would like to thank the organization of ECOOP‘07 for the support offered to the
invited speakers. We extend our thanks to all those who have participated in the orga-
nization of this workshop, in particular to the program committee, composed by: Uwe
Assmann, Technische Universitaet Dresden; Colin Atkinson, Universitaet Mannheim,;
Matteo Baldoni, Universita di Torino; Giancarlo Guizzardi, LOA-CNR Trento; Stephan
Hermann, Technische Universitaet Berlin; Pierre Kelsen, University of Luxembourg;
Claudio Masolo, LOA-CNR Trento; James Odell, Intelligent Automation, inc. Rockville
MD; Andrea Omicini, DEIS Universita di Bologna; Kasper @sterbye, IT University of
Copenhagen; James Noble, Victoria University of Wellington; Daniel Oberle, SAP Re-
search; Elke Pulvermueller, University of Luxembourg; Dirk Riehle, SAP Research,
SAP Labs, LLC - Palo Alto, CA; Trygve Reenskaug, University of Oslo; Leendert van
der Torre, University of Luxembourg; Harko Verhagen, DSV, KTH/SU.

References

1. Bachman, C., Daya, M.: The role concept in data models. In: Procs. of VLDB 1977, pp.
464476 (1977)

2. Steimann, F.: The role data model revisited. Applied Ontology 2(2), 89-103 (2007)

3. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control models. IEEE
Computer 2, 38-47 (1996)

4. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual. 2nd
edn., Pearson Higher Education (2004)

5. Arbab, F.: Abstract behavior types: A foundation model for components and their compo-
sition. In: de Boer, E.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002.
LNCS, vol. 2852, pp. 33-70. Springer, Heidelberg (2003)

6. Kendall, E.A.: Role model designs and implementations with aspect-oriented programming.
In: Proceedings of OOPSLA 1999, pp. 353-369. ACM Press, New York (1999)

122

7.

8.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

G. Boella and E. Steimann

Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.
Data and Knowledge Engineering 35, 83-848 (2000)

Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A., Guarino, N.:
Social roles and their descriptions. In: KR 2004. Procs. of Conference on the Principles of
Knowledge Representation and Reasoning, pp. 267-277. AAAI Press, Menlo Park (2004)

. Boella, G., Odell, J., van der Torre, L., Verhagen, H. (eds.): AAAI 2005 Fall Symposium

on Roles, an interdisciplinary perspective (Roles 2005), Arlington, VA, 03/11/05-06/11/05.
Volume FS-05-08 of AAAI Technical Report. AAAI, Menlo Park (2005)

Reengskaug, T.: Roles and classes in object oriented programming. In: Roles 2007. Pro-
ceedings of the 2nd Workshop on Roles and Relationship in Object Oriented Programming,
Multiagent Systems, and Ontologies (2007)

Pinker, S.: How the Mind Works. Norton, New York (1997)

Dvinge, N., Schultz, U.P., Christensen, D.: Roles and self-reconfigurable robots. In: Roles
2007. Proceedings of the 2nd Workshop on Roles and Relationship in Object Oriented Pro-
gramming, Multiagent Systems, and Ontologies (2007)

Genovese, V.: A meta-model for roles: Introducing sessions. In: Roles 2007. Proceedings of
the 2nd Workshop on Roles and Relationship in Object Oriented Programming, Multiagent
Systems, and Ontologies (2007)

Herrmann, S.: A precise model for contextual roles: The programming language Object-
Teams/Java. Applied Ontology 2(2), 181-207 (2007)

Baldoni, M., Boella, G., van der Torre, L.: Interaction between Objects in powerJava. Journal
of Object Technology 6, 7-12 (2007)

Balzer, S., Gross, T.R.: Member interposition: Defining classes. In: Roles 2007. Proceedings
of the 2nd Workshop on Roles and Relationship in Object Oriented Programming, Multiagent
Systems, and Ontologies (2007)

Rumbaugh, J.: Relations as semantic constructs in an object-oriented language. In: Procs.
of the OOPSLA-87: Conference on Object-Oriented Programming Systems, Languages and
Applications, Orlando, FL, pp. 466481 (1987)

Baldoni, M., Boella, G., van der Torre, L.: Relationships define roles, objects offer them. In:
Roles 2007. Proceedings of the 2nd Workshop on Roles and Relationship in Object Oriented
Programming, Multiagent Systems, and Ontologies (2007)

Gibson, J.: The Ecological Approach to Visual Perception. Lawrence Erlabum Associates,
New Jersey (1979)

Baldoni, M., Boella, G., van der Torre, L.: Relationships meet their roles in object oriented
programming. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767. Springer, Hei-
delberg (2007)

Kozaki, K., Sunagawa, E., Kitamura, Y., Mizoguchi, R.: Role representation model using
owl and swrl. In: Roles 2007. Proceedings of the 2nd Workshop on Roles and Relationship
in Object Oriented Programming, Multiagent Systems, and Ontologies (2007)

Loebe, F.: Abstract vs. social roles - towards a general theoretical account of roles. Applied
Ontology 2(2), 127-158 (2007)

Mizoguchi, R., Sunagawa, E., Kozaki, K., Kitamura, Y.: A model of roles in ontology devel-
opment tool: Hozo. Applied Ontology 2(2), 159-179 (2007)

Loebe, F.: Towards a definition of roles for software engineering and programming lan-
guages. In: Roles 2007. Proceedings of the 2nd Workshop on Roles and Relationship in
Object Oriented Programming, Multiagent Systems, and Ontologies (2007)

. Noble, J.: Basic relationship patterns. In: Procs. of EuroPLOP (1997)
. Pearce, D., Noble, J.: Relationship aspects. In: Procs. of AOSD, pp. 75-86 (2006)
. Balzer, S., Gross, T.R., Eugster, P.: A relational model of object collaborations and its use in

reasoning about relationships. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 323—
346. Springer, Heidelberg (2007)

Component-Oriented Programming
Report on the 12th Workshop WCOP at ECOOP 2007

Wolfgang Weck!, Ralf Reussner?, and Clemens Szyperski®

! Independent Software Architect, Ziirich, Switzerland
http://wuw.wolfgang-weck.ch
2 Universitat Karlsruhe (TH), Am Fasanengarten 5, D-76128 Karlsruhe, Germany
http://sdq.ipd.uka.de
3 Microsoft, USA
http://research.microsoft.com/“cszypers

Abstract. This report covers the twelfth Workshop on Component-Ori-
ented Programming (WCOP). WCOP has been affiliated with ECOOP
since its inception in 1996. The report summarizes the contributions
made by authors of accepted position papers as well as those made by
all attendees of the workshop sessions.

1 Introduction

WCOP 2007, held in conjunction with ECOOP 2007 in Berlin, Germany, was the
twelfth workshop in the successful series of workshops on component-oriented
programming. The previous workshops were held in conjunction with earlier
ECOOP conferences in Linz, Austria; Jyvéskyld, Finland; Brussels, Belgium;
Lisbon, Portugal; Sophia Antipolis, France; Budapest, Hungary; Malaga, Spain,
Darmstadt, Germany, and Oslo Norway, Glasgow, Scotland, and Nantes, France.

The first workshop, in 1996, focused on the principal idea of software compo-
nents and worked towards definitions of terms. In particular, a high-level defini-
tion of what a software component is was formulated. WCOP97 concentrated on
compositional aspects, architecture and gluing, substitutability, interface evolu-
tion and non-functional requirements. In 1998, the workshop addressed indus-
trial practice and developed a major focus on the issues of adaptation. The next
year, the workshop moved on to address issues of structured software archi-
tecture and component frameworks, especially in the context of large systems.
WCOP 2000 focused on component composition, validation and refinement and
the use of component technology in the software industry. The year after, con-
tainers, dynamic reconfiguration, conformance and quality attributes were the
main focus. WCOP 2002 had an explicit focus on dynamic reconfiguration of
component systems, that is, the overlap between COP and dynamic architec-
tures. 2003, the workshop addressed predictable assembly, model-driven archi-
tecture and separation of concerns. The 2004 instance of the workshop focused
on various technical issues and also on issues of industrialization of component-
orientation. WCOP 2005 revolved around different aspects of trustworthiness

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 123|131} 2008.
© Springer-Verlag Berlin Heidelberg 2008

124 W. Weck, R. Reussner, and C. Szyperski

with component-oriented programming. Considered were analyzing, asserting,
and verifying functional and non-functional properties of individual components
as well as of assembled systems. A central theme of WCOP 2006 was the compo-
sition and deployment of components, including component selection and adap-
tion. A minor focus was the relation between components and aspects, that is
between COP and AOP.

WCOP 2007 was reasoning on the nature of components, specifically its black-
box property. Talks and discussions argued on the blackbox property from a
model-driven, performance, and aspects point of view.

WCOP 2007 had been announced as follows:

WCOP seeks position papers on the important field of component-oriented
programming (COP). WCOP 2007 is the twelfth event in a series of highly
successful workshops, which took place in conjunction with every ECOOP
since 1996.

COP has been described as the natural extension of object-oriented
programming to the realm of independently extensible systems. Several
important approaches have emerged over the recent years, including com-
ponent technology standards, such as CORBA/CCM, COM/COM-+,
J2EE/EJB,.NET, and most recently software services, but also the in-
creasing appreciation of software architecture for component-based sys-
tems, as in SOA, and the consequent effects on organizational processes
and structures as well as the software development business as a whole.

COP aims at producing software components for a component market
and for late composition. Composers are third parties, possibly the end
users, who are not able or willing to change components. This requires
standards to allow independently created components to interoperate,
and specifications that put the composer into the position to decide what
can be composed under which conditions. On these grounds, WCOP’96
led to the following definition:

A component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. Com-
ponents can be deployed independently and are subject to com-
position by third parties.

After WCOP’96 focused on the fundamental terminology of COP, the
subsequent workshops expanded into the many related facets of compo-
nent software.

WCOP 2007 will discuss the black-box nature of components. On the
one hand, for many, components became synonymously with the black-
box building blocks of software. Technically, this means a component
is described by the interfaces it provides and requires. On the other
hand, for many reasons, an abstract description of specific aspects of the
component’s behaviour in addition to the mere interface specification
is needed. These reasons include architectural dependency analysis, the
description of non-functional properties or the verification of the absence

Component-Oriented Programming 125

of deadlocks. Therefore, in WCOP 2007 we explicitly ask for positions
statements discussing work related to the question:

“How dark should a component blackbox be?”

This includes position statements dealing with components or
component-based systems or component infrastructures, which explic-
itly make use of information on components beyond mere provides and
requires interfaces.

Submitted papers circled around model-driven development and adaptation,
component performance prediction, aspects for components and the nature of
components.

Ten papers by authors were accepted for presentation at the workshop and
publication in the workshop proceedings. Seventeen participants from around
the world participated in the workshop. The workshop was organized into four
morning sessions with presentations, one afternoon breakout session with three
breakout groups, and one final afternoon session gathering reports from the
breakout session and discussing future directions.

2 Presentations

This section summarizes briefly the contributions of the ten presenters, as grouped
into four sessions, i.e. model-driven development and adaptation of components,
component performance prediction, aspects and components, and component na-
ture. The full papers of all presentations mentioned below are collected on the
workshops Web—pageﬁl and in the WCOP proceedings (Technical Report No. 2007-
13 of the Faculty of Informatics of the University of Karlsruheﬁ).

2.1 Model-Driven Development and Adaptation of Components

The first session was concerned with model-driven development and component
adaptation.

A case study on model-based adaptation in the area of the Windows work-
flow foundation by Javier Cubo, Gwen Salaiin, Carlos Canal, Ernesto Pimentel,
and Pascal Poizat opened WCOP 2007. In their presentation it was pointed out
how to handle composition and adaptation of the Windows workflow founda-
tion. The presented approach supports adaptation of behavioural interfaces, i.e.
mismatches at an protocol level. After identifying such mismatches and map-
ping incompatible interfaces, the approach can generate adapters for protocol
adaptation.

The second contribution by Eveline Kaboré and Antoine Beugnard dealt with
an application of model transformations for enabling tracing design artifacts and

! http://research.microsoft.com/~cszypers/events/WCOP2007
2 http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007172

126 W. Weck, R. Reussner, and C. Szyperski

design decisions from a model. In a case study the approach is applied to the do-
main of “communication components”. By intentionally limiting the application
domain, code generation could be completely automated. The generated code
includes static and behavioural aspects.

2.2 Component Performance Prediction

In the second session, presentations were dealing with the prediction of non-
functional attributes, namely the performance of components.

The first presentation of this session was given by Klaus Krogmann. He pre-
sented a reverse engineering approach for models of software components, with
special respect to performance attributes of behavioural component specifications.
The proposed approach utilises a combination of static and dynamic analysis to
construct a parameterised specification of component behaviour. For finding
appropriate abstraction of the behavioural specification, machine learning
algorithms are used.

Michael Kuperberg, giving the second presentation, discussed the relevance of
parameters when performance-benchmarking Java bytecode or API. He pointed
out that the execution time of bytecode and API largely depends on the param-
eters of its operations. Consequently, predictions methods must be capable of
respecting operation parameters.

2.3 Aspects and Components

Bert Lagaisse and Wouter Joosen discussed a blackbox composition approach
through aspect orientation in the third session. In their presentation they empha-
sized a need for pure blackboxes supporting components that make all bindings
explicit. A case study showed the application of their aspect-oriented approach
for expressing dependencies for a middleware.

Angel Nunez and Jacques Noyé used aspects to integrate models for proto-
cols and components. They encapsulate components, not aware of certain pro-
tocols, into “aspect components”, which are respecting modeled protocols. The
non-intrusive aspect-driven approach keeps the blackbox nature of encapsulated
components. Thereby, a specific adapated language is used for specifying com-
ponent aspects.

The last aspect-related contribution was made by Guido Soldner and Riidiger
Kapitza. They contributed an approach enabling the runtime adaption of com-
ponent middleware. In this approach, aspects are used to dynamically weave
middleware component infrastructure. Extensions of their components (follow-
ing a greybox view) are expressed within an ontology to ease adaptation.

2.4 Component Nature

The last session was dedicated to the nature of components.
Jakob Henriksson, Florian Heidenreich, Jendrik Johannes, Steffen Zschaler,
and Uwe Affmann argue for a greybox approach of components. Influenced by

Component-Oriented Programming 127

supporting declarative languages (such as XQuery or OWL) within their Reuse-
ware approach, they claim for information beyond interfaces: Firstly, process-
ing information is not available for declarative languages, secondly, Reuseware
enables composition with techniques not being developed for reuse and compo-
sition. That is why an intrusive approach is required from their point of view.
Their greybox approach still aims at hiding as much information on component
internals as possible.

In his talk, Franz Puntigam argued for a strict separation between black- and
whitebox approaches, not allowing greyboxes. Component interfaces are usually
used for specifying functional properties. Starting to specify non-functional as-
pects like performance hinders substitutability as those details in general are
specific to a certain implementation. Using the example of synchronisation,
Puntigam proposed a possible solution for dealing with both functional and
non-functional aspects in component interfaces, still maintaining the blackbox
property of component in most cases.

Richard Rhinelander, giving his first international talk, discussed the relation
between components and interfaces. He pointed out that components generally
should not be specified by their interface. Instead, he proposes a strict distinction
of component model and interface models. After presenting the up-to-date un-
derstanding of interfaces and components in research, he proposed a converse and
sophisticated understanding of both terms and their interrelation with special
consideration of the differences between the available knowledge on components
at design-, assembly-, and runtime.

3 Break-Out Sessions

In the afternoon the workshop participants were organized in break-out sessions
addressing specific topics. Each group had a nominated scribe who, as named in
the subsection titles below, took notes which were used by the authors to write
the session summaries.

3.1 How Black Should a Component Be?

Scribe: Jakob Henriksson. The first breakout group was concerned with the major
topic of the workshop: The blackbox principle of components. In their discussion
the group defined the different shades:

— Blackbox: Only the interfaces of a component are known.

— Greybox: A component reveals interfaces and some selected component
internals that are not part of the interface.

— Whitebox: Such components are available by their implementation only.
All internals are known.

In this definitions, interfaces are an abstraction of the component: “technical”
interfaces, behaviour specifications, informal descriptions, or other information
to allow agreements on component usage.

128 W. Weck, R. Reussner, and C. Szyperski

How dark? The darkness (required level of abstraction) of a component depends
on the component model a component is captured in. Each component model
has specific requirements and application domains, hence the abstraction level
cannot be fixed.

3.2 How Much Information/Metadata Can Be Expected from a
Developer?

Secribe: Bert Lagaisse. The question for the required amount of information/
metadata raised further questions — instead of finding many answers, plenty of
new emerged:

— Who needs which information and why? What kinds of developers need to
provide the data (web developer, business logic author, or expert developer)?
How is the data specified?

— What kind of software is being developed? Is it safety critical or rapid/agile
development?

How much information is a developer willing to give?

How much can be extracted from the source/other info? Is there an automa-
tion for collecting such data?

In the discussion, the participants were arguing whether it makes sense to use
open source instead of specifications. Positions ranged from “don’t specify, ship
open source” to “it depends, source code can be used as fallback”. Additionally,
the benefit of specifications has to be seen from two viewpoints: Users vs. de-
veloper. While a certain amount of architectural/requirements documentation
helps understanding, too much can lower comprehension.

3.3 Formalisms in Component-Oriented Software Engineering

Scribe: Michael Kuperberg. This breakout group was concerned with usage of
formalisms in component-oriented software engineering. Following the question
“How formal should we be?”, the participants have identified and discussed the
topic, focusing on state-of-the-art and on desirable use of formalisms in COP
and software engineering in general.

— “How”: is there a metric or a measurement for degree of formalism? Can
we state that “approach A is more formal than approach B” and justify such
a statement?

— “Formal”

e Is there a common understanding of “formal” beyond the origin of the
word (“form”, used here in the sense of shape)? Is there a catalogue of
formal methods?

e What is the relation of formal and abstract?

e Can formalisms in component-oriented software engineering be grouped
(for example, “behaviour-describing” vs. “structure-describing”)? Is it
useful to “tag” formalisms with attributes (for example, “works only for
limited-scale models” or “is not realistic for highly parallel systems”)?

Component-Oriented Programming 129

— “Should”: Given increasing complexity of component-based software, bet-
ter understanding can be gained by using models (i.e., formal abstractions).
Model-driven development and architecting are currently gaining momentum
and tool support is steadily increasing, so “should” is to be read “must” for
the future.

— “We”: While we see the component-oriented programming from researchers’
perspective, we understand that the end users of our research are software
developers. Consequently, we should strive to hide the complexity of scien-
tific formalisms from the tool developers and software end users to encour-
age promotion of formal concepts and models in component-based software
development.

In fact, we believe that the motivation for using formalisms and models is com-
prised of several aspects, such as the pressure to develop quickly, effectively and
in a cost-saving way, while remaining flexible and able to respond to design
changes. In fact, achievement of these aspects can be used as success metrics
for applying formalisms. Model-driven architecting and development rely on for-
mal models and transformations help to ensure well-structured rapid software
creation.

On the other hand, understandability is an important threat to formalisms,
as these are often considered to be too complex to follow by practitioners and
programmers. Yet a good counter-example of a formalism usage that abstracts
away low-level details is UML and related technologies and tools.

Furthermore, reasoning on functional properties (correctness etc.) and extra-
functional properties (performance, reliability etc.) of component-based software
builds on the reasoning techniques from mathematics and logic, which themselves
rely on formalisms.

Working examples of well-known formalisms suitable for above tasks include,
among others,

— ontologies as semantical descriptions increasing the reuse of components and
allowing semantic-level adaptation

— protocol models for allowing protocol checking and automated adaptation

— process algebras, stochastic process algebras, stochastic reqular expressions,
timed and stochastic Petri nets etc. for behaviour descriptions; some of these
can be used for performance predictions and for proving correctness or reli-
ability

— logic-based formalisms such as Prolog or OCL for model-checking and trans-
formation-checking (especially w.r.t. correctness)

These examples show that formalisms have already gained strong foothold in
every-day software engineering research. So if practitioners want to profit from
research advantages, they need to accept using formalisms in a certain way. But
unfortunately, it is almost impossible for one human to be professional in all
formalisms and low-level technologies.

So we can conclude that to bridge the understanding gap between researchers
and developers/designers, formalisms should be further developed toward inclu-
sion into real-world tools. Resulting encapsulation in tool chains must happen

130 W. Weck, R. Reussner, and C. Szyperski

in such a way that end users are exposed only to input, output and a few un-
derstandable tool settings, while the researchers keep the freedom to “plug in”
their formalisms into the tool chains.

4 Final Words

We, the organizers, look back on a more than eleven years’ series of very success-
ful workshops on component-oriented programming. It is good to see, how over
the years the range of topics constantly evolves, while the increasing importance
of the aspects trust, quality attributes, architecture, and industrial engineering
is well recognized. In particular, we see that the notion of a component got more
refined: today we see, that the blackbox principle that a component should not
make assumptions on the implementation it does not necessarily follow that no
additional information on a component besides the interfaces should be speci-
fied. Much more, it turns out that to make component based systems applicable
in critical application domains, one need information beyond the interface to
perform analysis on the system’s quality properties, such as safety, reliability of
performance. Such information needed for analysis forms an abstraction of the
component’s behavior, and, in this way, links to the provided and required inter-
faces. However, ti keep the benefits of information hiding, users should not base
assumptions on this abstract component behavior specification, i.e., they should
not use this information implicitly in their implementation using the component.

The field of component orientation is now well connected to many other re-
search areas, such as prediction of extra-functional properties, software architec-
ture modeling and even aspect orientation. We have traveled a long way from
the first WCOP in 1996 in Linz and look forward to the continuing journey.

With respect to WCOP 2007, we would like to thank all participants and
contributors. In particular, we would like to thank the scribes of the break-
out groups Jakob Henriksson, Bert Lagaisse and Michael Kuperberg and Klaus
Krogmann for his support in preparing this report.

5 Accepted Papers

The full papers of all presentations are collected on the workshops Web—pageﬁ
and in the WCOP proceedings (Technical Report No. 2007-13 of the Faculty of
Informatics of the University of Karlsruheﬁ).

The following list of accepted and presented papers is sorted by the order of
the presentation.

1. Javier Cubo, Gwen Salaiin, Carlos Canal, Ernesto Pimentel, University of
Malaga, Spain; Pascal Poizat, Université d’Evry Val d’Essonne, France and
INRIA Rocquencourt, France. Relating Model-Based Adaptation and Imple-
mentation Platforms: A Case Study with WF/.NET 3.07

3 http://research.microsoft.com/cszypers/events/WCOP2007
4 http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007172

10.

Component-Oriented Programming 131

Eveline Kaboré and Antoine Beugnard, ENST Bretagne, France. On the ben-
efits of using model transformations to describe components design process
Klaus Krogmann, Universitat Karlsruhe (TH), Germany. Reengineering of
Software Component Models to Enable Architectural Quality of Service Pre-
dictions

. Michael Kuperberg and Steffen Becker, Universitdt Karlsruhe (TH), Ger-

many. Predicting Software Component Performance: On the Relevance of
Parameters for Benchmarking Bytecode and APlIs

Bert Lagaisse and Wouter Joosen, K.U.Leuven, Belgium. Aspectual Depen-
dencies: Towards Pure Black-Box Aspect-Oriented Composition in Compo-
nent Models

Angel Nunez and Jacques Noyé. A Seamless Extension of Components with
Aspects using Protocols

Guido Soldner and Riidiger Kapitza, University of Erlangen-Niirnberg, Ger-
many. AOCI: An Aspect-Oriented Component Infrastructure

Jakob Henriksson, Florian Heidenreich, Jendrik Johannes, Steffen Zschaler,
and Uwe Afimann, Technische Universitdt Dresden, Germany. How dark
should a component black-box be? The Reuseware Answer

Franz Puntigam, Technische Universitit Wien, Austria. Black & White,
Never Grey: On Interfaces, Synchronization, Pragmatics, and Responsibili-
ties

Richard Rhinelander, University of Kitara, Australia. Components have no
Interfaces!

List of Participants

Name

Javier Cubo
Guillaume Dufréne
Jakob Henriksson
Jendrik Johannes
Klaus Krogmann
Michael Kuperberg
Bert Lagaisse
Anne Martens
Angel Nunez

Ales Plesek
Cristian Prisacariv
Franz Puntigam
Holger Schmidt
Ralf Reussner
Richard Rhinelander
Guido Séldner
Clemens Szyperski

Affiliation, Country

University of Malaga, Spain

INRIA, France

TU Dresden, Germany

TU Dresden, Germany

Universitat Karlsruhe (TH), Germany
Universitat Karlsruhe (TH), Germany
K. U. Leuven, Belgium

Universitat Karlsruhe (TH), Germany
EMN / INRIA, France

INRIA, France

University of Oslo, Norway

TU Wien, Austria

University Ulm, Germany

Universitat Karlsruhe (TH) / FZI, Germany
University of Kitara, Australia
University Erlangen, Germany
Microsoft, Redmond, USA

Model-Driven Software Adaptation
Report on the Workshop M-ADAPT at ECOOP 2007

Nelly Bencomo!, Gordon Blair!, and Robert France?

! Computing Department, InfoLab21, Lancaster University,
Lancaster, LA1 4WA, UK
{nelly,gordon}@comp.lancs.ac.uk
2 Computer Science Department, Colorado State University,
Fort Collins, 80523-1873, USA

france@cs.colostate.edu

Abstract. This first edition of the workshop Model-driven Software
Adaptation (M-ADAPT’07) took place in the Technische Universitét
Berlin with the International Conference ECOOP’07 in the beautiful
and buzzing city of Berlin, on the 30th of July, 2007. The workshop was
organized by Gordon Blair, Nelly Bencomo, and Robert France. Partic-
ipants explored how to develop appropriate model-driven approaches to
model, analyze, and validate the volatile properties of the behaviour of
adaptive systems and its environments. This report gives an overview of
the presentations as well as an account of the fruitful discussions that
took place at M-ADAPT’07.

1 Introduction

Adaptability is emerging as a critical enabling capability for many applications,
particularly for environment monitoring, disaster management and other appli-
cations deployed in dynamically changing environments. Such applications have
to reconfigure themselves according to fluctuations in their environment. The un-
predictability of changes in the environments and their requirements pose new
challenges to Software Engineering. Current software development approaches
specify the functionality of the system at design-time. Such approaches are not
sufficiently expressive to develop systems that dynamically adapt to environ-
ment fluctuations. As a result, alternative approaches are required that take
into account the specification of behaviour and functionality during the exe-
cution. However, dynamic adaptation can lead to emergent and unpredictable
behaviour. The workshop aimed to start the establishment of a sound foundation
for the use of model-driven techniques for software adaptation.

Research and industry efforts focused on model-driven technologies have
proved the value of the use of models during the design, implementation, and
deployment stages of development. However, the use of model-driven techniques
for validating and monitoring run-time behaviour can also yield significant ben-
efits. In particular, models can be used to provide a richer semantic base for

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 132 2008.
© Springer-Verlag Berlin Heidelberg 2008

Model-Driven Software Adaptation 133

runtime decision-making related to system adaptation and other runtime con-
cerns. For example, models can be used to help determine when a system should
move from a consistent architecture to another consistent architecture.

This workshop builds on a sister event, Models@runtime 2006, held at MOD-
ELS 2006 in Italy [2]. Models@runtime 2007 was also held at MoDELS 2007 in
Nasville, USA. Bringing the workshop to an ECOOP audience helped broaden
the discussions to cover issues related to the integration of modelling techniques
with other techniques typically covered at ECOOP (e.g. component-based and
reflection techniques).

The call for submissions mainly focused on the following research topics:

— Formal notations for modeling, analyzing, and validating adaptive systems

— Management and modelling the dynamic variability intrinsic in the structure
and behaviour of adaptive systems and their environments

— The relevance and suitability of different model-driven approaches to moni-
toring and managing systems during runtime

— Compatibility (or tension) between different model-driven approaches

— Experience related to the use of run-time models to adapt software systems

— Model-driven design for adaptability

The workshop placed strong emphasis on the cross-pollination of ideas from
different researchers from diverse research fields including model-driven engi-
neering, product lines and system families, software architectures, computational
reflection, embedded systems, and autonomous and self-adaptive systems. The
programme committee of M-ADAPT’07 reflected this diversity; thirteen inter-
national researchers from different areas were tasked with the reviewing process
of the papers submitted.

In response to the call for papers, 15 papers were submitted, of which 10 were
accepted for presentation and discussion in Berlin: 6 long papers and 4 short pa-
pers. Long papers identified clear research challenges and offered clear contribu-
tions and answers to the workshop. Short papers identified research challenges and
specific working examples during the discussions of the workshop. The number of
papers submitted represented a healthy interest in M-ADAPT. Each submitted
paper was reviewed by at least 3 programm committee members who suggested
detailed improvements to the accepted papers. The papers can be found in the
proceedings of the workshop [I] and on the associated web pages [3].

The workshop was opened to attendees who were not co-authors of any of
presented papers; Twenty two people in total registered for the event from Brazil,
France, Germany, Spain, UK, and USA.

2 Workshop Structure

The workshop was structured in two parts: presentations during the morning
and discussions during the afternoon. During the first 15 minutes of the morn-
ing, Gordon Blair and Nelly Bencomo introduced the goals of the workshop
and proposed a roadmap of the rest of the day. On the basis of the suggested

134 N. Bencomo, G. Blair, and R. France

research topics in the Call for Papers and on the contents of the accepted pa-
pers, the presentation part was organized in 3 sessions. The first two sessions
were devoted to Autonomic and Embedded Systems and Specific Techniques and
were dedicated to the long papers. The third session Stated Problems included
the 4 short papers.

Long papers were presented by two speakers, the first speaker was an author
of the paper and the second speaker was an independent reader. Second readers
provided a second view on the contents of the paper, placing it in relation to the
workshop topics and research questions. Authors of short papers presented their
research work and stated research challenges identified from their research.

To ensure effectiveness in trems of time, each long paper presentation was
limited to 15 minutes of presentation by the main author and 5 minutes for the
second reader followed by 5 minutes of questions. Short paper were limited to 5
minutes of presentation

The afternoon was dedicated to focused debates. The workshop was closed by
a general discussion, including an evaluation of the workshop itself by the par-
ticipants. Details of the sessions are provided in Sections Bland @ The proposed
format worked well, with all attendees contributing to the workshop through
constructive and friendly discussion.

3 Paper Presentations

In this session we summarize the presentations, contributions, and the discus-
sions raised from the talks.

Session 1: Autonomic and Embedded Systems

The workshop opened with three papers on Autonomic and Embedded Systems
issues. The first paper “On Run-time Behavioural Adaptation in Context-Aware
Systems” by Javier Cémara7 Gwen Salan, and Carlos Canal. The second reader
of the paper was Franck Barbier. The authors reported on their experiences tack-
ling the problem of runtime modifiable adaptation policies dependent on the
current state of the context of the system. Instead of creating an appropriate
adaptor to compose the different components at design time, it was explained
how their approach aims at dynamically creating this adaptor. Javier described
a way to model externally visible communication behavior of components as well
as (context-dependent) valid inter-communications between the different com-
ponents. Javier also explained how their research could be used as the basis for
dynamic adaptor generation using dynamic aspect weaving. Javier’s work was
well received as a good technique for adaptation of software. This presentation
provided a crosslink with another ECOOP Workshop, the 4th workshop on Co-
ordination and Adaptation Techniques for Software Entities (WCAT’07) [6]. The
co-authors of the paper presented by Javier were organizers of WCAT’07 making
valuable contributions to M-ADAPT.

1 'We use underline to denote the name of the author presenting the paper at the
workshop.

Model-Driven Software Adaptation 135

The second paper, “A Model-driven Approach to the Development of Au-
tonomous Control Applications” by Helge Parzyjegla, Michael Jaeger, and Gero
Muehl and discussed by Mario Trapp as a second reader. Helge presented a
model-driven approach for the development of Autonomous Control applications
in sensor networks. Helge explained how their work was motivated by the need to
relieve the developer from the inherently high complexity of such development.
The authors proposed the encapsulation of the necessary expert knowledge in a
model transformation. In order to facilitate runtime adaptation, knowledge from
the model is made available at runtime. The research is partially based on the
MDA philosophy [4]; a multi-step transformation process from application mod-
els to code generation for target platforms was presented. The authors focus on
basic role deployment (i.e., a kind of impersonating behaviors that nodes/devices
can perform). Participating nodes are equipped with self-stabilizing algorithms
for inter-role communication and dynamic role assignment that are the basis of
reconfiguration at runtime. It was praised how the approach proposed by Helge
and his colleagues offer simple initial ideas on the use of a model information to
drive adaptation and auto-organization.

The last paper in the session was “Development of Safe and Reliable em-
bedded systems using dynamic adaptation” by Rasmus Adler, Daniel Schneider,
and Mario Trapp with Helge Parzyjegla as the second reader. Rasmus presented
a classification of approaches to implementing dynamically adapting systems.
Such systems were classified in four categories from 'no dynamic adaptation’ via
‘implicit dynamic adaptation’ all the way through to ’systematically engineered
dynamic adaptation’. Rasmus talked about the project MARS. This project aims
at providing a seamless engineering approach from the requirements to running
systems. Starting from a feature model the system architecture is defined using
their own Architecture Description Language (ADL). After specifying the adap-
tation behavior, a design model in Matlab/Simulink is generated that combines
adaptation and functionality in an integrated model. They use validation and
verification techniques of the adaptation behavior include simulation, verifica-
tion, and probabilistic analysis. A major contribution of the presentation was
Rasmus’ comments on the state of the art and future research requirements for
the field of dynamic adaptation. The classification presented a systematic ap-
proach to the development of dynamically adapting systems. The thoughts on
future research directions led to healthy discussion about the need to study the
impact of dynamic adaptation on safety and reliability. From the discussions, it
was concluded and highlighted by Heldge that common understanding of terms
(as for example, adaptivity) is essential when developing the right model-driven
techniques for adaptive systems.

Session 2: Specific Techniquesﬂ
The second session was dedicated to more specific techniques for software
adaptation. The session was introduced by the paper on Applying Architectural

2 This session had originally three papers; however one of the papers could not be
presented as the speaker could not attend the workshop.

136 N. Bencomo, G. Blair, and R. France

Constraints in the Modeling of Self-adaptive Component based Applications by
Mohammad Ullah Khan, Roland Reichle, and Kurt Geihs, with Ethan Hadar
as the second reader. Mohammad described an approach for model-based de-
velopment of dynamically reconfigurable systems. The modeling technique en-
ables developers to model the variabilities of a system with respect to runtime
adaptation. The above may result in a large combinatorial number of alterna-
tive configurations (or variants). Mohammad emphasized the fact that many of
these variants are usually not feasible, as some component realizations may re-
quire or exclude realizations for other components. Hence, he showed how the
authors adopted an approach that builds on architectural constraints specified as
part of the application model. They assumed that component realizations may
have some features (properties) that have to correspond to the features of other
component realizations or exclude some components realizations. Features are
associated with a simple constraint. These constrains (invariants) are checked by
the adaptation management when creating the application variants. Examples
of constrains are (i) a feature which is common to all involved components or
(ii) a feature exclusively provided by only one component. The modeling frame-
work follows the MDA paradigm to transform the application UML model [5],
including the architectural constraints, to appropriate source code. The final ap-
plication is deployed to a middleware platform supporting adaptive applications.
The middleware supporting the adaptive applications uses the generated source
code for filtering out all infeasible combinations at runtime, based on the feature
names and the constraints. During discussion, it was highlighted that the role
of MDA in the proposed idea was not crucial for the adaptation concerns of the
approach. The use of MDA was not different from the traditional use. The main
contribution identified is the way how Mohammad and his co-authors have tack-
led the unforeseen conditions that appear at runtime. The identification is based
on the architectural constrains using the features identified. Architectural con-
strains has a crucial role when addressing the scalability problem of the number
of variants.

The second session was closed by the paper “Modeling Software Adaptation
Patterns” by Hassan Gomaa. The second reader was Mohammad Ullah Khan.
Hassan talked about the importance of being able to dynamically adapt soft-
ware architectures at run-time. Hassan also described his research on software
adaptation patterns and their role in software system adaptation. It was shown
how a software adaptation pattern could define the way a set of components
(as an architecture or design pattern) dynamically cooperate to change the soft-
ware configuration to a new configuration. Four patterns were presented and
discussed: Master-Slave Centralized control Client/Server Decentralized control.
Hassan pointed out that for every software architectural or design pattern, there
is a corresponding software adaptation pattern, which models how the software
components and interconnections should be changed. Using his premise, it is
possible to think of automatic evolution of software architectures using soft-
ware adaptation patterns. A research challenged identified by Hassan and ac-
knowledged by other participant is the automatic selection of the appropriate

Model-Driven Software Adaptation 137

adaptation pattern to maintain a partial service while adaptation is taking place,
and QoS issues during software adaptation, for example. Mohammad and other
participants raised the fact that the work presented was heavily based on UML
highlighting that there was no use of domain-specific languages, for example.

Session 3: Stated Problems
Four short papers were presented in the third and last session.

- “Ezperiments with a Runtime Component Model” by Jo Ueyama, Geoff
Coulson, Edmundo Madeira, Thais Batista, and Paul Grace

- “SELF-*: Endowing Software Components with Autonomic Capabilities Based
on Modeling Language Executability” by Cyril Ballagny, Nabil Hameurlain, and
Franck Barbier

- “Modelling Adaptation Policies for Self-Adaptive Component Architectures”
by Franck Chauvel and Olivier Barais

“A Reconfiguration Mechanism for Statechart Based Components” by

Xabier Elkorobarrutia, Gaiuria Sagardui, and Xabier Aretxandieta

These presentations identified different problems where model-driven tech-
niques can be useful to provide sound solutions. Model-driven techniques seem
to be useful to drive software composition during runtime. Models also have a
role in guiding and generating component reconfiguration in different domains.
However, it was highlighted that the potential value of models is (i) their ca-
pability to represent the dynamic reconfiguration of sets of components (i.e.
during execution), (ii) its use in conjunction with reflection. adaptation policies,
autonomous (self-adaptive) application , and (iii) validation and verification.
Models can be used to predict and analyze the quality of the adaptation behav-
ior to enable systematic control of the software development as highlighted by
Rasmus et all.

4 Discussion Sessions

4.1 Preamble

As a preamble to the general discussion, Gordon Blair wrapped up the morn-
ing sessions summarizing what he had observed and learned so far from the
workshop.

The most striking aspect of the morning for him was the universal recognition
of the pressing need for Software Engineering (SE) methodologies, and specifi-
cally model-driven techniques, for adaptive systems. However, it was clear that
the research field is currently in an embryonic stage, with no clear consensus
about approaches or even a common terminology. It is essential to use the ex-
perience from existing approaches and acknowledge the contributions already
offered by different communities. These contributions provide building blocks
and the base knowledge required to answer the open questions and research
challenges tackled in this workshop. Crucially, there are also very few opportu-
nities to bring together the required communities and hence this workshop was
viewed as timely.

138 N. Bencomo, G. Blair, and R. France

He commented that the papers from the morning actually provided a strong
and complementary representation of such existing work under the headings
techniques and methods, and methodologies:

Techniques and Methods

— The use of Components, context, composition, and adaptation techniques
[Javier Cdmara et al]

— Context and policies [Franck Chauvel et al]

— State-based models (at run-time) [Cyril Ballagny et al]

— Real-time (reflective) component models [Jo Ueyama et al]

— daptation patterns, adaptation taxonomy [Hassan Gomaa]

Methodologies

— Modelling of adaptation for embedded systems [Rasmus Adler et al]
— Models, roles and self-stabilizing algorithms [Helge Parzyjegla et al]
— Models and architectural constraints [Mohammad Ullah Khan et all|

He then presented a set of key challenges that have to be tackled before
the area can mature. The first was the lack of a common terminology which
makes it difficult to have meaningful dialogue across the various contributing
communities. The second was then embracing the full complexity of real world
distributed applications where there is typically a very large design space of
components and features, where you have to deal with both anticipated and
unanticipated events, where you may need distributed and/ or decentralised
solutions for scalability, and where you need to address whether to seek domain
specific or generic solutions. He also highlighted the key distinction between
adaptive and autonomic systems (the latter embracing self-* management and
inevitably emergent properties), and the subsequent need to have model-driven
techniques that embrace what is in effect a spectrum of adaptive or autonomic
solutions.

He then concluded with a set of open questions for the audience to consider
in the afternoon [2]:

— What is an appropriate MDE methodology for adaptive and/ or autonomic
(distributed) systems

— What are the appropriate constituent models?

— What is an appropriate transformational process?

— Where is adaptation folded into such a process?

— Is there a role for models@run-time?

— What do we know (useful building blocks)?

— What do we not know (towards a roadmap)?

— and, of course, what should we do next!

The attendees then submitted a number of questions that they saw as impor-
tant based on the discussions so far. From this, two key areas were identified for
further discussion in the afternoon:

Model-Driven Software Adaptation 139

— Overall (model-driven) methodologies for adaptive and/ or autonomic dis-
tributed systems
— Specific focus on the role of models at execution time (cf. Models@Runtime)

4.2 Summary of Ensuing Discussion

As mentioned above, the discussion in the afternoon focused on overall method-
ologies and also on the concept of Models@Runtime.

The discussion on overall methodologies was facilitated by Hassan Gomaa and
build on the considerable expertise in the group on different aspects of adaptive
systems. The discussion focused mainly on identifying common terminology and
synergy between the different approaches. Particular attention was given to the
complementary roles of triggers, adaptation actions, and adaptation rules as
defined below:

trigger: an event or condition that causes the need of adaptation, e.g. user-
related actions and changes in the environment.

action: which realizes the actual adaptation, e.g. architecture, algorithms, and
parameters.

adaptation rule: a rule that defines which triggers cause which adaptation
actions. Rules also describe the conditions that should be met to carry out an
action.

This provided a common framework to then seek more comprehensive solu-
tions for adaptive distributed systems.

The other group focused exclusively on the emerging concept of maintaining a
model of a system at runtime. This is very much a new idea and initial discussion
concentrated on motivation for such an approach, highlighting the role that such
models can have in informing and constraining the adaptation process. There
was also a view that such models can raise the level of abstraction in discourse
about such adaptive processes. The rest of the discussion then considered the key
question of what a model at runtime would look like, what level of abstraction
should this offer, and what (meta-) information should be maintained in such
models? Should their also be one model or are we looking at a series of orthogonal
models.

The two groups then came back together and discussed their collective re-
sults. The participants agreed that the workshop had raised many very valuable
questions and that this is potentially a very important area for research. Some
insights emerged during the workshop. For example, as explained in Hassan’s
work, models can be used to represent adaptation patterns that would be auto-
matically selected during runtime. The paper presented by Mohammad showed
initial ideas on how to use constrains in architecture-based models as a way to
deal with the unanticipated conditions often found in adaptive systems. Further-
more, given the potential impact of dynamic adaptation on reliability and safety
properties of systems, a major concern highlighted was the need to predict and
analyze the level of quality of adaptive behaviour. In this sense, models used
during runtime should represent information that makes explicit the use of QoS
during adaptation.

140 N. Bencomo, G. Blair, and R. France

5 Final Remarks

The main goal of the workshop was to bring together researchers from different
communities interested in the field to get them to know about each other’s work.
The workshop lived up to its expectations with high-quality papers, presenta-
tions, and discussions. The fact that there are actually very few forums where the
constituent researchers from different communities can get together was high-
lighted. For these reasons the opportunity to held the workshop M-ADAPT was
timely. However, it was concluded that next steps should include clarification
of the terminology to help come to a common understanding of adaptive sys-
tems. This common understanding would help to concentrate rather than dilute
efforts. The concept of models at runtime was also flagged as a crucial area for
further investigation.

Three papers were selected to be published (in extended versions) in IEEE
Distributed Systems online [7]. These were the papers presented by Rasmus
Adler et all, Mohammad Ullah Khan et all, and Helge Parzyjegla et all.

The workshop was closed with a warm “thank you” from the organizers to all
participants for a successful workshop. After the workshop finished, participants
headed to the workshop reception at ECOOP to continue sharing ideas and enjoy
each other’s company.

6 List of Attendees

Javier Camara, Universidad de Malaga, Spain

Pascal Poizat, INRTA/ARLES, University of Evry, France
Javier Cubo, Universidad de Malaga, Spain

Carlos Canal, Universidad de Malaga, Spain

Hassan Gomaa, George Mason university

Jo Ueyama, University of Campinas, Brazil

Bassein Elkarablich, University of Texas, Austin, USA
Ethan Hada, CA Labcs, USA

Rasmus Adler, IESE, Fraunhofer, Germany

Daniel Schider, IESE, Fraunhofer, Germany

Mario Trapp, IESE, Fraunhofer, Germany

Anne Martens, Universitt Karlsruhe (TH), Germany
Xabier Elkorobarrutia, Mondragon Unibertsitatea ,Spain
Mohammad Ullah Khan, University of Kassel, Germany
Franck Barbier, University of Pau, France

Antoine Beugnard, GET/ENST Bretagne, France

Nabil Hameurlain, University of Pau

Cyril Ballagny, University of Pau

Helge Parzyjegla, Berlin University of Technology
Franck Chauvel, IRISA, Universit de Rennes, France
Nelly Bencomo, Lancaster University, UK

Gordon Blair, Lancaster University, UK

Model-Driven Software Adaptation 141

Acknowledgments. First of all, we would like to thank the members of the
program committee who acted as anonymous reviewers and provided valuable
feedback to the authors: Franck Barbier, Benoit Baudry, Fabio M. Costa, Eli
Gjrven, Gang Huang, Rui Silva Moreira, Klaus Pohl, Marten van Sinderen,
Arnor Solberg, Mario Trapp, Thais Vasconcelos Batista, Steffen Zschaler, Lus
Ferreira-Pires, and Bedir Tekinerdogan. We also thank to the Workshop Chairs
Peter Pepper Arnd and Poetzsch-Heff and specially Michael Cebulla for the
organization and patience dealing with the organization of the workshops. Last
but not least, the participants and authors of all submitted papers are thanked
for helping us making this workshop possible.

References

1. Blair, G., Bencomo, N., France, R., Cebulla, M.: Proceedings of the First Workshop
on Model-driven Adaptation (M-ADAPT 2007) at ECOOP 2007, Bericht Nr. 2007—
10 (2007)

2. Blair, G., Bencomo, N., France, R.: Summary of the Workshop Models@Qrun.time at
MoDELS 2006. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 226-230. Springer, Heidelberg (2006)

3. http://www.comp.lancs.ac.uk/~bencomo/M-ADAPT07/index.html| (2007)

4. Kleppe, A., Warmer, J., Bast, W.: MDA Explained The Model Driven Architecture:
Practise and Promise. Addison-Wesley, London (2003)

5. Fowler, M., Scott, K.: UML Distilled Addison Wesley (1999)

6. Canal, C., Murillo, J., Poizat, P.. WCAT 2007. Proceedings of the Fourth Interna-
tional Workshop on Coordination and Adaptation Techniques for Software Entities
(2007)

7. http://dsonline.computer.org| (2007)

http://www.comp.lancs.ac.uk/~bencomo/M-ADAPT07/index.html
http://dsonline.computer.org

Object-Oriented Reengineering

Report on the Workshop WOOR’07 at ECOOP 2007
10" Anniversary Edition

Serge Demeyer', Yann-Gaél Guéhéneuc?, Anne Keller!, Christian F.J. Lange?,
Kim Mens?, Adrian Kuhn®, and Martin Kuhlemann®

! Department of Mathematics and Computer Science,
University of Antwerp — Belgium
2 Department of Computer Science and Operations Research,
Université de Montréal — Canada
3 Engineering and Technology Group,
Eindhoven University of Technology — Netherlands
4 Département d’Ingénierie Informatique,
Université catholique de Louvain — Belgium
5 Software Software Composition Group,
University of Berne —Switzerland
5 School of Computer Science,
University of Magdeburg — Germany

Abstract. The ability to reengineer object-oriented legacy systems has become
a vital matter in today’s software industry. Early adopters of the object-oriented
programming paradigm are now facing the problem of transforming their object-
oriented “legacy” systems into full-fledged frameworks. To address this problem,
a series of workshops has been organised to set up a forum for exchanging experi-
ences, discussing solutions, and exploring new ideas. Typically, these workshops
were organised as satellite events of major software engineering conferences,

past 10 years, participants of this workshop series have been actively contributing
to the state-of-the-art on reengineering of object-oriented systems. This special
10" anniversary edition was no exception and this report summarises the key
discussions and outcome of that workshop.

1 Introduction

In preparation to the workshop, participants were asked to submit a position paper that
would help in steering the workshop discussions. Five position papers were accepted,
of which eight authors were present during the workshop. Together with a number of
organisers and participants without position paper, the workshop attracted eighteen par-
ticipants. The position papers and other information about the workshop are available
on the workshop web-site at http://smallwiki.unibe.ch/woor2007/ [13].

A format for the workshop day was chosen that balanced presentation of position
papers and time for discussions, using the morning for presentations of position papers
and the afternoon for discussions in working groups. The workshop was concluded

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 142 008.
(© Springer-Verlag Berlin Heidelberg 2008

Object-Oriented Reengineering 143

with a plenary session during which the results of the working groups were exposed
and discussed by all workshop participants in the larger group.

2 Position Papers

Taking into account positive feedback from participants from the previous years, we
decided to require that each paper be presented by the authors of another paper. We
have observed over the years that this system ensures that participants read the position
papers of one another and are able to discuss them from different viewpoints. For the
authors, it is also interesting to hear what another researcher in the field has understood
from the submission and thinks about the approach. As in previous years, this format
resulted in vivid discussions during the presentations, which formed a good foundation
for the afternoon discussions. We now give a short summary of each of the five position
papers that were presented at the workshop.

Discussion on the Results of the Detection of Design Defects [[16]]. In this paper, the
authors present validation results of their design defect detection method (DECOR),
which allows the systematic specification of design defects and subsequently the auto-
matic generation of design defect detection algorithms from these specifications. The
specification language is based on high-level key concepts identified from textual design
defect descriptions. The validation is based on evaluating of 4 design defects together
with their 15 smells in terms of precision and recall.

nMARPLE: .NET Reverse Engineering with MARPLE [[17). Detecting design pattern
in a system is an aspect of reverse engineering that may contribute to the understanding
of the overall system design. The authors of this paper present a tool (1MARPLE)
that is an extension of the existing design pattern detection tool MARPLE. nMarple
is specifically designed to reverse engineer .Net executables and the authors discuss
peculiarities of reverse engineering in a .Net context.

Challenges in Model Refactoring [18]. While refactoring of source code is a well-
known technique to improve maintainability, refactoring of models is a largely unex-
plored territory. The authors of this paper discuss nine challenges in model refactoring
that they identified as the most important ones. The discussed challenges include tra-
ditional refactoring issues—such as (model) quality and behaviour preservation—and
modelling-specific issues—such as model synchronisation and defining refactorings for
domain specific languages.

Must Tool Building Remain a Craft? [19]. In the reverse-engineering community, tool
building plays an important role for validating research results. In this position paper,
the author argues that despite its importance as validation instrument and its cost, tool
building is approached as a craft rather than as an engineering discipline. On the basis
of an extensive study of research literature, the author identifies shortcomings in aca-
demic tool building in the fields of requirements engineering, design-related issues, and
development process.

144 S. Demeyer et al.

A Meta-model Approach to Inconsistency Management [20]. As models become in-
creasingly important software development artefacts, consistency between models, i.e.,
between different views, different versions, and different abstraction levels, also gains
importance. Consistency between models however should be managed rather than en-
forced. The authors of this paper introduce the idea of an inconsistency meta-model to
support inconsistency management.

3 Working Groups

Taking into account the presented position papers and the discussions that followed
them, we split up in three working groups for the afternoon. The next three subsections
report on the discussions that were held in each of these working groups.

3.1 Working Group 1: Model Reengineering

The topic of the first working group was modelling. The main objective of the working
group was to discuss how the interests of the WOOR workshop such as reengineering
and refactoring relate to modelling. Originally, models were used in software engineer-
ing to describe and communicate about a system. However, in recent techniques, such
as Model Driven Architecture (MDA [21]]), automated transformations are performed
on models to create new models. The target model is based on the source model, but it
contains more details, i.e., it is more specific than the source model. The transformation
is called code generation in case the target model is a representation of the original
model in the form of source code. An overall result of the discussion is that, in the
context of modelling, there are three areas of interest for reengineering research. We
present the three areas of interest together with open questions that were raised during
the discussions:

— Source model. Which flaws exist in a model? What are the quality requirements
for the model to be useful to its audience or to be ‘transformable’?

— Target model. Which flaws exist in a model? To what extent do flaws in the source
model lead to flaws in the target model?

— Transformation. Is ‘reengineering-by-transformation’ possible (i.e., can source
model flaws be resolved by transformations)? Can transformations be improved
by means of reengineering?

The discussions were divided into two parts that are summarised below. The major
part of the discussion addressed model smells, similar to code smells (as proposed by
Fowler [22]]). A smaller part of the discussion was devoted to code generation.

Model Smells. Model smells are flaws in a model. To distinguish model smells from
bugs or errors in general, the working group defined model smells as being specific for
models, i.e., they are caused by characteristics that are inherent to models. Additionally,
it was agreed upon that model smells can be distinguished from “simple errors” by the
amount of human effort that is involved in dealing with them. Usually the amount of
human effort involved in detecting, analysing, prioritising, and resolving model smells

Object-Oriented Reengineering 145

is rather important, in comparison to simple errors, where automated techniques reduce
the amount of human effort involved in dealing with them.

Furthermore the discussion addressed the resolution of model smells. The following
set of basic model operations was identified, that can be used to resolve model smells:
add, remove, delete, merge, collapse, flatten, and split. Depending on the type of a
model smell and its location, its resolution consists of applying a subset of these oper-
ations. Future work should relate model smell types to particular resolution strategies
based on these operations.

Two substantial questions regarding resolution were addressed:

— Can all smells be resolved?
— Must all smells be resolved?

The first question could not be answered at all in the discussion, because there did
not exist an exhaustive list of model smells and because there exists only little work
in the area of model smell resolution. The working group formed an opinion about
the latter question. It is assumed that for automated processing of models (e.g., model
transformation) “small errors” must be resolved, and model smells should be resolved.
However, for a human-only use of the models, errors and smells could remain unre-
solved, depending on the purpose of the model usage. More research is required to
investigate which types of model smells must be resolved for particular purposes and
which ones do not necessarily need to be resolved.

Besides these observations concerning model smells, the main outcome of the dis-
cussion was a list of types of model smells:

Inconsistency. Inconsistencies are contradictions between different parts of the

models, e.g., between diagrams.

— Incompleteness. Incompleteness is the absence of necessary model elements. Typi-
cally, a model is incomplete with respect to some other artefacts, for example with
respect to the requirements, i.e., not all functionalities are modelled, or with respect
to the information needed by a stake-holder.

— Imbalance. Imbalance refers to differences between parts of a model with respect
to their properties, such as level of abstraction or completeness.

— Redundancy. Redundancy is present if a concept is described in different parts of a
model. Redundant parts can be inconsistent, they can differ with one another, e.g.,
with respect to their levels of abstraction or versions.

— Violations of Modelling Conventions. Modelling conventions are a means to
assure a uniform style of modelling amongst several modellers. Violations of these
conventions are considered model smells.

— (Too high) Complexity. In modelling, usually different ways of modelling can be
used to describe the same system. If a complex way of modelling is chosen while a
simpler model would be possible, the high complexity is regarded as a model smell.
This complexity differs from the complexity that is inherent to a problem, which
cannot be reduced by a particular way of modelling.

— Too abstract—Too detailed. The appropriate level of abstraction depends on the goal
of a model. A wrong choice in the abstraction level is regarded as a model smell.

— Dead model parts. Dead model parts are parts of a model that are outdated or that

are not used anymore.

146 S. Demeyer et al.

— Layout flaws. Several models offer diagrams as graphical representations. In case
the layout of the diagrams does not follow established layout guidelines (e.g., Sun
et al. [24])), the flaw is regarded as a model smell.

Code Generators. A smaller part of the discussion was devoted to code generators.
It was noticed that implementations that are based on the same source model can have
different behaviours, depending on the code generator that was used. Additionally, par-
ticipants reported that the choice of a particular code generator would strongly affect
whether model refactorings are behaviour preserving. Therefore the comparison with
respect to differences in behaviour between code generators, such as AndroMDA or
GME, was identified as an area for future research.

3.2 Working Group 2: Tool Building Issues

The second working group discussed a number of issues relevant to builders of reengi-
neering tools. First of all, based on Kienle’s position paper “Must tool building re-
main a craft?” [19]], which was presented in the morning session, the group discussed
whether or not tool building should remain a craft and highlighted some points in favour
and against. Next they discussed what lessons could be learned from experienced tool
builders: what are the success stories and what are the pitfalls to avoid? Finally, they
briefly discussed the issue of how to compare and benchmark tools.

Should tool building remain a craft? Several arguments in favour of considering tool
building as a craft were put forward. One of the strongest arguments is that building
research tools is often an exploratory process. In many cases, neither the requirements
nor the solution space of the problem at hand are known completely up front. Flexibility
in research is needed. In such a situation, the process of building a tool can actually
help researchers to shape the way they think about the problem and to discover what
their tool can and should do. Exploratory modelling is often a key task in research tool
building.

On the other hand, sometimes making just a proof of concept is not enough and
there are some strong reasons for tool building not to be an ad-hoc process. First of all,
having a more rigid process can increase the productivity of tool builders and may lead
to better quality tools. It may even allow to automate part of the process. Also, if you
do not want a tool that is just built for one occasion or experiment but rather a tool or a
tool framework that remains for many years, then maybe following an ad-hoc process
is not the right choice.

In conclusion, there seems to be a kind of trade-off to be made by the tool builders.
But maybe these two alternative ways of building tools should not be regarded as two
independent and separate approaches, but rather as complementary. Maybe the best
process to follow is to first make a “quick and dirty” prototype of the tool that you
would like to develop, possibly reusing some existing building blocks or parts of other
tools built earlier. Having made such a prototype allows you to evaluate it and improve
on it. This process can be repeated until you are happy with the developed tool or until
some important limitations are encountered. At that point, it is probably wise to start
adopting a more rigourous tool building process.

Object-Oriented Reengineering 147

Positive lessons learned in building tools. There was a consensus among tool builders
present at the workshop that, in the long run, it pays off to invest into shared infrastruc-
ture and common exchange formats. This facilitates both reuse of existing work and
co-operation between researchers and research groups.

A well-known example of such a common exchange format in the domain of object-
oriented reengineering is the FAMIX exchange model [25126]]. This model allows
reengineering tools or prototypes to exchange information concerning object-oriented
source code. Building a common exchange format has the advantage that it is easier to
get accepted than a common tool infrastructure, yet might lead to a common infrastruc-
ture once everyone starts using that common format.

To avoid reinvestigating effort in earlier tools, it is often better to build a bridge (like
for instance mentioned in the reengineering pattern “build a bridge to the new town”
[27]]) to prior tools rather than reimplement them whenever you want to apply them in
a new context or port them to a new environment. A noteworthy example hereof is the
IntensiVE tool-suite [28], implemented in the Smalltalk language, which was originally
built to manage and reason about evolution of Smalltalk programs. Since the underlying
ideas of the tool were applicable to any object-oriented language, the decision was taken
to extend the tool-suite to deal with Java programs as well. One way of doing so would
have been to reimplement from scratch the entire tool in Java. However, this would
have lead to a major implementation effort and two separate branches of the tool to be
maintained: one for Smalltalk and one for Java. Instead, a bridge was implemented to
allow the Smalltalk tool to access Java programs in an Eclipse workspace. Although
implementing this bridge was not a trivial endeavour; in the end, it allowed having one
tool that can deal with several languages. In addition, the bridge itself could be reused
for similar Smalltalk programs that reason over Java programs.

A third proven recipe for success in reverse engineering tools is to make a common
framework or tool that can serve as a backbone for several other tools. We can mention
several examples of such a common backbone:

— The MOQOSE platform that implements the language-independent FAMIX model
mentioned above.

— The SOUL declarative meta-programming language [29] that was used as a back-
bone for the IntensiVE tool-suite [28] and many other tools that require reasoning
over the structure of object-oriented source code.

— The (ASF+SDF) Meta-Environment [30] that is a framework for language devel-
opment, source code analysis, and source code transformation. It has been success-
fully used in a wide variety of analysis, transformation, and renovation projects.

— the PADL meta-model of the Ptidej tool suite that is a language-independent meta-
model to describe object-oriented systems and patterns, and that has been used in
several research work, see for example [31].

Pitfalls in tool building. Tool development in research differs from tool building in
industrial environments. The main difference is that research tools are mainly built as
proofs of concept of techniques, solutions, and algorithms, rather than for commercial
use. That particular set-up gives rise to several pitfalls and drawbacks, some of which
are listed below.

148 S. Demeyer et al.

— Research tools are usually built by Ph.D. candidates, and when the original tool
builder leaves the research group, the tool often dies.

Researchers often implement their tools from scratch, rather than building on prior
tools or frameworks.

Researchers tend to reimplement algorithms and tools that have already been im-
plemented earlier. We have to remember that we are tool builders and not algorithm
implementers.

To be dependent on tools maintained by other researchers can be dangerous, as
there is no guaranteed maintenance of research tools (see the first item above). This
is a trade-off with the previous item: to avoid such dependencies, researchers often
prefer to reimplement things themselves.

We should use the right tool for the job. Some tools and environments are better
for achieving your goal than others (try to make the right choice up front). For
example, every so many years, a new language or environment hype appears in
research or industry. As researchers, we should not switch to those new languages
or environments when there is no real need to. On the one hand, remember that we
are not commercial tool builders: techniques, solutions, and algorithms can also be
proven and verified in more dynamic and lightweight environments. On the other
hand, a good reason for jumping on the mainstream could be to have a large user
base for conducting empirical studies.

Tool building patterns. We identified the need to distil recurring patterns from these
pitfalls and positive lessons. There have been some interesting approaches in that di-
rection recently. For example, to overcome the tendency of building monolithic, single-
purpose software development tools, Vainsencher and Black proposed a pattern
language that would enable the integration of multiple analyses and tools in a more
modular fashion.

An example that was discussed in the working group was the “tool bridge pattern”.
Many tool builders use a bridge pattern to reuse existing subtools with an “ad-hoc”
bridge (for example, a bridge from your tool to the Eclipse API to access the right data
in the Eclipse UI, or a bridge to a dedicated program like Mathematica to do some
advanced calculations). Advantages of such a bridge are that it becomes much faster to
implement the tool (because you do not have to reimplement the subtools) and that it is
easy to replace the subtools you rely on by other ones later on. Disadvantages are that
the tool(s) may be considered as less coupled from a user point of view (you need two
or more subtools rather than having one homogeneous tool) and that the bridge may
bring some runtime overhead. Implementing such a bridge may also require quite some
hacks and technicalities, thus leading to a more complex maintenance process.

Good practices. From the above discussions, we then distilled some “good practices”
for tool builders to take into account:

— Probably a good strategy is to start by implementing an ad-hoc prototype first, to
get the ideas straight, and then gradually adhere to a more rigourous development
process.

— Developing a backbone tool infrastructure, or at least a common exchange format,
is generally a good idea.

Object-Oriented Reengineering 149

Give the tool an extensible (data) architecture, to make it easy to extend or reuse
later on.

Overcome the “not invented here” syndrome and try to avoid reinventing or reim-
plementing existing tools. Rather, reuse or extend (mature) existing ones.

Avoid “cowboy coding” where tools are implemented from scratch in an ad-hoc
fashion.

Create a community of researchers that use or work on the tool (either a single
research group or bigger).

In addition to these good practices the importance of publishing scientific articles on
the tool itself (and not only on the results that were obtained with it) was stressed. In
spite of what is generally believed, there do exist several journals where such articles
can be published, such as Elsevier’s “Experimental Software and Toolkits” (EST) or
Wiley’s “Software—Practice and Experience” (SPE). There exist several workshops in
domains related to object-oriented reengineering, where tool papers can be presented
and published, sometimes as a special issue of some journal.

How to compare/benchmark tools? To conclude our working group session a final
discussion was held on how to compare and benchmark tools. Although many articles
and books have been written on “evaluation”, tool builders do not seem to be suffi-
ciently aware of that literature. They should get acquainted with that literature and use
it in their articles, mentioning clearly what kind of evaluation was conducted (just some
argumentation, benchmarks, prototypical examples, interviews and surveys, case stud-
ies, user studies, ...). Part of the problem is the lack of background of many researchers
in empirical studies. Ideally, every researcher should have had a course on doing good
formal empirical studies during his studies (statistics, null hypothesis, independent vari-
ables. ..). Unfortunately, often this is not the case.

3.3 Working Group 3: Language Independence for Reverse Engineering Tools

The subject of this working group was language independence for reverse engineering
tools. The problem is that reverse engineering tools must accommodate many existing
programming languages in (as well as making room for the new ones that appear) with-
out having the need to “reinvent the wheel”. This problem was raised during the morn-
ing session and in previous WOOR workshops and there was some overlap between
this working group on the previous working group on tool building. Nevertheless, it
was felt that language independence deserved dedicated focus because it is a problem
that exists for many years and no solution, to the best of our knowledge, is yet within
grasp. The discussions attempted to formalise the problem and to provide guidelines for
future research on language independence. The discussions, although intense, led to a
smaller body of knowledge than other working sessions because of the reduced number
of participants and of the need for further research.

Conclusion of the discussions. During the discussions of this working group four main
points came out.

— Language independent representations of source code need an agreed-upon level of
abstraction, which could be an intermediate representation or bytecode.

150

S. Demeyer et al.

Language independence depends on the kind of analyses that will be performed
on the program representations. Indeed, to define a language independent represen-
tation, we need to know what kind of analyses will be performed, because these
analyses may not be language independent, possible only on a subset of major
languages. In any case, there must exist mechanisms to extend the language inde-
pendent representation of a program with language-dependent data, some context.
The representation must be fit both for representing programs and for being queried.
It is possible that a true language independent representation will be defined only
as a set of low-level queries, which results can then be aggregated. Queries allow
the integration of the concept of views.

Language independent representation must itself be language independent. The use
of XML Schema seems like promising to define such a representation, if used
Schema must be instantiated/implemented in different programming languages ac-
cording to the needs of its users.

Future directions of research. Future work includes studying existing program repre-
sentations (whether they claim to be language independent or not) to compare them with
one another and possibly identify common primitives. A representation must include a
mechanism to allow new data to be included incrementally but applying successive
analyses. A first list of existing representations includes (but is certainly not limited to):

Basic elements, for example Elemental Design Pattern, inheritance, method calls...
ASTs but one for each version of each language.

MOF-based meta-model for Java in the process of combining with C++ (cf.
Helmut)

Queries-based, SOUL (Smalltalk, Java)

UML.

PADL.

Rigi Standard Format but maybe language dependent because does not carry any
semantics.

FAMIX.

AOL.

Future work also includes researching all known analyses developed or performed
on a regular basis by researchers and practitioners to identify common and opposing
requirements with respect to language independence. Then, among all possible candi-
dates, a choice should be made based on the decision whether to support an analysis in
the representation or not. A first list of existing analyses includes (but is certainly not
limited to):

Design pattern detection.

Code smell detection.

Association/aggregation/composition (but may be too low level).
Point-to analysis.

Clustering.

Metric computations (which might enrich a representation).

Slicing (dynamic and static).

Test suite generation.

Type inference (tagging nodes, refining nodes, instantiating new nodes).

Object-Oriented Reengineering 151

4 Conclusion: What Next ?

In this report, we have listed the main ideas that were generated during the workshop
on object-oriented reengineering organised in conjunction with ECOOP 2007. After this
tenth anniversary edition, the main question was whether it was worthwhile to continue
working on reengineering, or whether it was better to continue on a new topic. The
question remained open, but some participants suggested to organise a tool builders
workshop, because tool building (integration, exchange formats, benchmarks. ..) has
been an active topic of discussions that appeared throughout the whole WOOR series.

Acknowledgements

This workshop was sponsored by the Interuniversity Attraction Poles Programme
(IUAP) on “Modeling, Verification, and Evolution of Software” (MOVES), financed
by the Belgian State — Belgian Science Policy from January 2007 to December 201 1.

References

1. Casais, E., Jaasksi, A., Lindner, T.: FAMOOS workshop on object-oriented software evolu-
tion and re-engineering. In: Bosch, J., Mitchell, S. (eds.) ECOOP 1997 Workshops. LNCS,
vol. 1357, pp. 256-288. Springer, Heidelberg (1998)

2. Ducasse, S., Weisbrod, J. (eds.): Proceedings of the ECOOP Workshop on Experiences in
Object-Oriented Re-engineering. FZI report 6/7/98, FZI Forschungszentrum Informatik (July
1998)

3. Ducasse, S., Weisbrod, J.: Experiences in object-oriented reengineering. In: Demeyer, S.,
Bosch, J. (eds.) ECOOP 1998 Workshops. LNCS, vol. 1543, pp. 72-98. Springer, Heidelberg
(1998)

4. Ducasse, S., Ciupke, O. (eds.): Proceedings of the ECOOP Workshop on Experiences in
Object-Oriented Re-engineering. FZI report 2-6-6/99, FZI Forschungszentrum Informatik
(June 1999)

5. Ducasse, S., Ciupke, O.: Experiences in object-oriented re-engineering. In: Moreira, A.M.D.,
Demeyer, S. (eds.) ECOOP 1999 Workshops. LNCS, vol. 1743, pp. 164-183. Springer, Hei-
delberg (1999)

6. Demeyer, S., Ducasse, S., Mens, K. (eds.): Proceedings of the ECOOP 2003 Workshop on
Object-Oriented Re-engineering (WOOR 2003). Technical Report, University of Antwerp -
Department of Mathematics and Computer Science (June 2003)

7. Demeyer, S., Ducasse, S., Mens, K.: Workshop on object-oriented re-engineering WOOR
2003. In: Buschmann, F., Buchmann, A., Cilia, M.A. (eds.) ECCV-WS 2003. LNCS,
vol. 3013, pp. 72-85. Springer, Heidelberg (2004)

8. Wuyts, R., Ducasse, S., Demeyer, S., Mens, K. (eds.): Proceedings of the ECOOP 2004
Workshop on Object-Oriented Re-engineering (WOOR 2004). Technical Report, University
of Antwerp - Department of Mathematics and Computer Science (June 2004)

9. Wuyts, R., Ducasse, S., Demeyer, S., Mens, K.: Workshop on object-oriented re-engineering
(WOOR 2004). In: Malenfant, J., @stvold, B.M. (eds.) ECOOP 2004. LNCS, vol. 3344, pp.
177-186. Springer, Heidelberg (2005)

10. Wuyts, R., Ducasse, S., Demeyer, S., Mens, K.: Workshop on object-oriented re-engineering
(WOOR 2005). In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586. Springer, Heidelberg
(2005)

152

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

S. Demeyer et al.

Wuyts, R., Ducasse, S., Demeyer, S., Mens, K.: Workshop on object-oriented re-engineering
(WOOR 2006). In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067. Springer, Heidelberg
(2006)

Demeyer, S., Gall, H. (eds.): Proceedings of the ESEC/FSE Workshop on Object-Oriented
Re-engineering. TUV-1841-97-10, Technical University of Vienna - Information Systems
Institute - Distributed Systems Group (September 1997)

Demeyer, S., Gall, H.: Report: Workshop on object-oriented re-engineering (WOOR 1997).
ACM SIGSOFT Software Engineering Notes 23(1), 28-29 (1998)

Demeyer, S., Gall, H. (eds.): Proceedings of the ESEC/FSE 1999 Workshop on Object-
Oriented Re-engineering (WOOR 1999). TUV-1841-99-13, Technical University of Vienna
- Information Systems Institute - Distributed Systems Group (September 1999)

Demeyer, S., Guéhéneuc, Y.G., Mens, K., Wuyts, R., Ducasse, S., Gall, H. (eds.): Proceed-
ings of the ECOOP 2007 Workshop on Object-Oriented Re-engineering (WOOR’07) — 10th
anniversary edition (June 2007), http://smallwiki.unibe.ch/woor2007/
Moha, N., Guéhéneuc, Y.G., Duchien, L., Meur, A.F.L.: Discussion on the results of the de-
tection of design defects. In: Demeyer, S., Guéhéneuc, Y.G., Mens, K., Wuyts, R., Ducasse,
S., Gall, H. (eds.) Proceedings of the ECOOP 2007 Workshop on Object-Oriented Re-
engineering (WOOR 2007) — 10th anniversary edition (2007)

Arcelli, F., Cristina, L., Franzosi, D.: nMARPLE:NET reverse engineering with MARPLE.
In: Demeyer, S., Guéhéneuc, Y.G., Mens, K., Wuyts, R., Ducasse, S., Gall, H. (eds.) Pro-
ceedings of the ECOOP 2007 Workshop on Object-Oriented Re-engineering (WOOR 2007)
— 10th anniversary edition (2007)

Mens, T., Taentzer, G., Miiller, D.: Challenges in model refactoring. In: Demeyer, S.,
Guéhéneuc, Y.G., Mens, K., Wuyts, R., Ducasse, S., Gall, H. (eds.) Proceedings of the
ECOOP 2007 Workshop on Object-Oriented Re-engineering (WOOR 2007) — 10th anniver-
sary edition (2007)

Kienle, H.M.: Must tool building remain a craft? In: Demeyer, S., Guéhéneuc, Y.G., Mens,
K., Wuyts, R., Ducasse, S., Gall, H. (eds.) Proceedings of the ECOOP 2007 Workshop on
Object-Oriented Re-engineering (WOOR 2007) — 10th anniversary edition (2007)

Keller, A., Demeyer, S.: A meta-model approach to inconsistency management. In: Demeyer,
S., Guéhéneuc, Y.G., Mens, K., Wuyts, R., Ducasse, S., Gall, H. (eds.) Proceedings of the
ECOQP 2007 Workshop on Object-Oriented Re-engineering (WOOR 2007) — 10th anniver-
sary edition (2007)

Object Management Group: MDA Guide, Version 1.0.1. omg/03-06-01 edn. (June 2003)
Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley Co., Inc.
(November 1999)

Lange, C.F.J., DuBois, B., Chaudron, M.R.V., Demeyer, S.: An experimental investigation
of UML modeling conventions. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MOoDELS 2006. LNCS, vol. 4199, pp. 27-41. Springer, Heidelberg (2006)

Wong, K., Sun, D.: On evaluating the layout of UML diagrams for program comprehension.
Software Quality Journal 14(3), 233-259 (2006)

Demeyer, S.T.S., Steyaert, P.: FAMIX 2.0 - the FAMOOS information exchange model, Tech-
nical report, University of Berne (August 1999)

Tichelaar, S., Ducasse, S., Demeyer, S.: FAMIX and XMI. In: Proceedings of the Seventh
Working Conference of Reverse Engineering, pp. 296-298. IEEE Computer Society Press,
Los Alamitos (2000)

Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-Oriented Reengineering Patterns. Morgan
Kaufmann, San Francisco (2002)

Mens, K., Kellens, A., Pluquet, F., Wuyts, R.: Co-evolving code and design with intensional
views — a case study. Journal on Computer Languages, Systems and Structures 32(2-3),
140-156 (2006)

http://smallwiki.unibe.ch/woor2007/

29.

30.

31.

32.

Object-Oriented Reengineering 153

Mens, K., Michiels, I., Wuyts, R.: Supporting software development through declaratively
codified programming patterns. Journal on Expert Systems with Applications (23), 405-431
(2002)

Klint, P.: A meta-environment for generating programming environments. ACM Transactions
on Software Engineering nd Methodology 2(2), 176-201 (1993)

Antoniol, G., Guéhéneuc, Y.G.: Feature identification: An epidemiological metaphor. Trans-
actions on Software Engineering 32(9), 627-641 (2006)

Vainsencher, D., Black, A.P.: A pattern language for extensible program representation. In:
Pattern Languages of Programming Confernce (PLoP2006) (2006)

Practical Approaches for Software Adaptation
Report on the 4th Workshop WCAT at ECOOP 2007

Carlos Canal', Juan Manuel Murillo?, and Pascal Poizat®*

! Universidad de Mélaga, GISUM Software Engineering Group
canal@lcc.uma.es
2 Universidad de Extremadura, Quercus Software Engineering Group
juanmamu@unex.es
3 IBISC FRE 2873 CNRS - Université d’Evry Val d’Essonne
4 INRIA / ARLES project-team
pascal.poizat@inria.fr

Abstract. Coordination and Adaptation are two key issues when devel-
oping complex distributed systems. Coordination focuses on the interac-
tion among software entities. Adaptation focuses on solving the problems
that arise when the interacting entities do not match properly. This is
the report of the fourth edition of the WCAT workshop, that took place
in Berlin jointly with ECOOP 2007. Previous editions the workshop
dealt with general issues which mainly served for a better characteri-
zation of Software Adaptation as an emerging discipline within the field
of Software Engineering. For this edition, we wanted to put the focus on
practical approaches for software adaptation, in order to show how this
discipline helps in the construction of current software systems.

1 Introduction

The development of distributed systems requires means to structure them in
order to leverage their complexity. This has led to different structuring means,
such as modules and objects, and more recently, components and services. Sys-
tems are then built as assemblies of these smaller and reusable parts, and during
system construction the focus is shifted towards interaction issues: how to com-
bine the different entities that form the system, how to coordinate them in order
to achieve the desired goals, and how to adapt them when there is some kind of
mismatch that avoids their proper composition.

These new challenges have promoted the development of specific fields of Soft-
ware Engineering such as Coordination [I] and Adaptation [2I3]. Coordination
addresses the description of the interactions between entities and provides ex-
pressive and effective means to compose them. Coordination is a hot topic in
Component-Based Software Engineering (CBSE) [] and Service Oriented Ar-
chitecture (SOA) [B], for instance, or for Web Services, where choreography and
orchestration mechanisms are instances of the coordination concept [6].

On the other hand, Software Adaptation aims at automatically deriving adap-
tors, pieces of software specifically designed for solving interaction mismatch.

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 154 2008.
© Springer-Verlag Berlin Heidelberg 2008

Practical Approaches for Software Adaptation 155

Adaptation procedures must combine solutions from different research domains,
namely (i) model-based or formal approaches to develop mismatch detection
and adaptor generation algorithms, (ii) middleware technology to support the
detection of mismatch at runtime and the implementation of adaptor models,
(iii) QoS and prediction models to assess the effect of adaptation on running
systems.

A serious limitation of currently available interface descriptions is that they
provide too little information about the entities described, preventing any kind
of reasoning about what could be expected from their interaction. Indeed, while
the notations commonly used provide convenient ways to describe the typed sig-
natures of software elements, they offer a quite limited support to describe their
interactive behaviour, non-functional properties (time, QoS), and semantics. To
avoid these limitations, different kinds of extensions to interface languages have
been proposed, and some of them are already reaching industrial maturity, such
as WSBPEL, for describing the orchestration of composite Web Services.

In this context, the goal of Software Adaptation is to take these extended
interface specifications of the components that are being combined to form a
system, together with a generated or end-user specified composition contract of
the desired connection among them, and generate automatically an adaptor —a
specific computational entity with the main goal of guaranteeing that software
components will interact in the right way not only at the signature level, but also
at the protocol, Quality of Service, and semantic levels. In particular, Adapta-
tion focuses on the dynamic and automatic generation of adaptors. In this sense,
models for software adaptation can be considered as a new generation of coordi-
nation models. An introduction to Software Adaptation, its state-of-the-art, the
description of the main research lines in the field, and some of its open issues
can be found in [2].

This report summarizes the fourth edition of the WCAT workshop [7], that
took place in Berlin jointly with ECOOP 2007. The WCAT workshop series
provides a venue where researchers and practitioners on these topics can meet,
exchange ideas and problems, identify some of the key issues related to coordi-
nation and adaptation, and explore together and disseminate possible solutions.
The successive WCAT editions tried to address different issues related to coordi-
nation and adaptation. The 2007 edition was focused on more specific practical
approaches related to coordination and adaptation at runtime, the implemen-
tation of coordinators and adaptors, context-aware and dynamically evolving
coordination or adaptation contracts, and relations between service composi-
tion and adaptation in pervasive computing. The list of topics of interest of the
workshop was:

— interfaces, types and contracts supporting coordination and adaptation;
— identification and specification of interaction requirements and problems;
— behavioural interfaces, extra-functional properties;

— automatic generation of compositions of adaptors;

— formal/rigorous approaches to Software Adaptation;

— coordination and adaptation of services;

156 C. Canal, J.M. Murillo, and P. Poizat

— coordination and adaptation in pervasive computing;

— relations between adaptation and the software life-cycle;

— relations between adaptation and MDE;

— relations between adaptation and AOSD;

— metrics and prediction models for software coordination and adaptation;

— prediction of the coordination and adaptation impact on Quality of Service;
— surveys, case studies, industrial and experience reports.

The rest of this report is organized as follows. In Section 2] we enumerate the
contributions received, and also the participants of the workshop. Then, Sec-
tion Bl presents a comparative outline of these contributions. Finally, Section [
presents the conclusions of the workshop, and identifies several open issues in
the field to be addressed in future editions.

2 Contributions and Workshop Participants

In order to enable lively and productive discussions, prospective participants
were required to submit in advance a short position paper, describing their work
in the field, open issues, and their expectations for the workshop. From the
contributions received, we decided to invite ten position papers. These papers
have been published in the proceedings of the workshop [7], as a technical report
of the Universities of the organizers. They are also available online at the website
of the workshop:

http://wcat.unex.es

where also information about past editions can be found.
The list of accepted papers, together with the names and affiliations of their
authors is as follows:

— A Model of Self-Adaptive Distributed Components
An Phung-Khac*, Antoine Beugnard, Jean-Marie Gilliot,
and Maria-Teresa Segarra
{an.phungkhac,antoine.beugnard, jm.gilliot,mt.segarra}@enst-bretagne.fr

ENST Bretagne, France

— A Framework for Automatic Generation of Verified Business Process
Orchestrations
Faisal Abouzaid
mohamed-faical.abouzaid@polymtl.ca

Ecole Polytechnique de Montreal, Canada

— Automatic Refactoring-Based Adaptation
Ilie Savga*, and Michael Rudolf
{is13, s0600108}@inf.tu-dresden.de
Technische Universitat Dresden, Germany

Practical Approaches for Software Adaptation 157

— Adapting Web 1.0 User Interfaces to Web 2.0 User Interfaces through RIAs
Juan Carlos Preciado*, Marino Linaje*, and Fernando Sdnchez-Figueroa™
{jcpreciado,mlinaje,fernando}Qunex.es
Universidad de Extremadura, Spain

— Invasive Patterns: aspect-oriented adaptation of distributed applications
Luis Daniel Benavides Navarro*, Mario Stdholt, Rémy Douence,
and Jean-Marc Menaud
{1benavid,sudholt,douence,menaud}@emn. fr
Ecole des Mines de Nantes, France

— Feature Dependent Coordination and Adaptation of Component-Based
Software Architectures
Hassan Gomaa*
hgomaa@gmu.edu
George Mason University, USA

— Safe Dynamic Adaptation using Aspect-Oriented Programming
Miguel A. Pérez-Toledano*, Amparo Navasa, Juan Manuel Murillo*
{toledano,amparonm, juanmamu}@unex.es
Universidad de Extremadura, Spain
and Carlos Canal*
canal@lcc.uma.es
Universidad de Mélaga, Spain

— Disentangling Virtual Machine Architecture
Michael Haupt™
michael.haupt@hpi.uni-postdam.de
University of Postdam, Germany
Celina Gibbs, and Ivonne Coady
{celinag,ycoady}@cs.uvic.ca
University of Victoria, Canada

— On Run-time Behavioural Adaptation in Context-Aware Systems
Javier Camara®*, Gwen Salatin, and Carlos Canal*
{jcamara,salaun,canal}@lcc.uma.es
Universidad de Mélaga, Spain

— Relating Model-Based Adaptation and Implementation Platforms:
a case study with WF/.NET 3.0
Javier Cubo, Carlos Canal*, Gwen Salatin, Ernesto Pimentel
{cubo, canal,salaun,ernesto}@lcc.uma.es
Universidad de Mélaga, Spain
and Pascal Poizat*
pascal.poizat@inria.fr

INRIA, France

158 C. Canal, J.M. Murillo, and P. Poizat

Authors that were in fact present at the workshop are marked with and aster-
isk in the relation above. Apart from those, also attended the workshop, without
presenting a paper:

— Cyril Ballagny (cyril.ballagny@univ-pau.fr)
University of Pau, France

— Michael Cebulla (mce@cs.tu-berlin.de)
Technical University Berlin, Germany

— Fabricio Fernandes (fabricio.fernandes@emn.fr)
Ecole des Mines de Nantes, France

— Ethan Hadar (ethan.hadar@ca.com)
CA Labs, Israel

— Nabil Hameurlain (nabil.hameurlain@univ-pau.fr)
University of Pau, France

In total, eighteen participants coming from five different countries attended
the workshop.

3 Comparative Summary of the Presentations

The position papers presented in the workshop covered a wide number of issues
related to coordination and adaptation, but mainly focused on practical adap-
tation issues, as it was demanded in the call for papers of the 2007 edition. The
contributions can be classified into three different categories:

— adaptation techniques for specific software engineering approaches;
— adaptation techniques for specific structural elements;
— adaptation techniques and tools for specific platforms.

In the sequel, these works are briefly summarized and they are classified ac-
cording to the taxonomy of software adaptation techniques [8], which was one
of the main results of the first edition of the WCAT workshop series.

3.1 Adaptation Techniques for Specific Software Engineering
Approaches

The first group of works was concerned with how software adaptation can be
managed when a specific software engineering approach is chosen to build soft-
ware systems. Three papers fall in this category, dealing respectively with adap-
tation in distributed component systems (CBSE), Web 2.0 engineering, and
Aspect Oriented Software Development.

The work by An Phung-Khac and his colleagues from ENTS Bretagne
(A model of Self Adaptive Distributed Components) tackles the problem in the
context of distributed component systems, where adaptation must be performed
in the different nodes hosting the components of the system. In such a situ-
ation, the coordination between the adaptation procedures performed at each

Practical Approaches for Software Adaptation 159

node is critical to ensure the correctness of the whole system. For that, the au-
thors propose a self-adaptive distributed component model. The model is based
on the separated specification of communication and adaptation. At runtime,
each functional component is associated to a composite manager which con-
tains a manager variant connected to an adaptation manager. Such managers
are in charge of detecting adaptation at other sites and triggering the convenient
adaptations in the associated functional component. In this way, self-adaptive
adaptation is handled.

The authors propose extending their work by going into the implementation
of coordination protocols to support node connection and disconnection for open
systems and providing optimizers for the composite managers.

Since the composite managers detect the adaptation at runtime this approach
can be classified as runtime adaptation. Moreover, the adaptation is performed
by the adaptation manager, so it can be considered as automatic adaptation.

Juan Carlos Preciado presented his work on Adapting Web 1.0 User Interfaces
to Web 2.0 User Interfaces through RIAs, jointly developed with his colleagues
from the University of Extremadura. Their proposal deals with adaptation in
the context of Web 2.0 User Interfaces (Uls) using Rich Internet Applications
(RIAs) [9]. The authors claim that it is not only important to have method-
ologies for developing applications for Web 2.0 from the scratch, but it is also
necessary to have methods for adapting existing Web 1.0 applications to Web
2.0 Uls. With this problem in mind, they have developed the RUX-Model, a
model driven method for user interface adaptation. RUX provides a component
library in charge of specifying the correspondences between the elements in the
old interface and the elements in the new one. The method works by first ex-
tracting the connections rules from the legated Web 1.0 application (connections
between pages, data used by the web application, and the existing hypertext el-
ement groupings), and then obtaining an abstract model of the application. In
the two subsequent steps a concrete (new) interface, and a final Web 2.0 user in-
terface are obtained applying transformation rules supported by the components
library.

The methodology is supported by the RUX-Tool which currently works to-
gether with WebRatio, a tool suite for the WebML modeling language [10], but
there is also work in progress with other similar case tools such as UWE and
OO-H CASE.

The approach presented in this work can be considered as static time adap-
tation supporting both manual and automatic adaptation.

The last work in this first group —Safe Dynamic Adaptation using Aspect-
Oriented Programming— was presented by Miguel A. Pérez-Toledano, also from
the University of Extremadura, and developed jointly with the University of
Malaga. The work focuses on adaptation using the Aspect-Oriented Software
Development paradigm (AOSD) [11]. AOSD adaptation approaches make use of
aspects to facilitate the dynamic adaptation of the components, but are unable
to derive automatically the correct composition of the corresponding aspectual
adaptors, since they may interfere with each other. It is hence necessary to

160 C. Canal, J.M. Murillo, and P. Poizat

verify the behaviour of the resulting system in order to ensure the correctness of
the adaptation process. This is precisely the issue addressed in their work. The
approach starts from the specification using the Unified Modeling Language
(UML) of both the initial system and the aspects that will be in charge of the
different facets of the adaptation required. These specifications are validated by
transforming them into an algebraic description of the system in the Calculus
of Communicating Systems (CCS) [I2]. Next, extended finite state machines
are automatically generated to verify, simulate, and test the modeled system’s
behaviour. The result of this process can then be compared with the actual
behaviour of the running system. To optimize this task, the authors propose
grouping components so as to center the study on the points actually affected
by the behaviour introduced by the aspects.

Since the new aspects are added to the software system in a dynamic way this
approach falls in the category of runtime adaptation approaches. Also, aspects
are written by a programmer, so it can be considered as manual adaptation.
Finally, as aspects can modify the behaviour of the system they are applied to,
the approach deals with behavioural adaptation.

3.2 Adaptation Techniques for Specific Structural Elements

The works in this group are concerned with how adaptation can be managed
when the software development is based on using some specific structural ele-
ments such as frameworks, product lines, or virtual machines.

In the presentation of his work Automatic Refactoring-Based Adaptation, llie
Savga, from the Technische Universitat Dresden, focused on the mismatch prob-
lems that can appear when changes are introduced in the frameworks on which
an application is based. For example, a version update of a framework could pro-
duce mismatches between the new version and the components using the previous
one. The authors argued that most of the changes causing signature mismatch
can be automatically detected and solved by using the information about the
changes in the code. More specifically, their work focuses on refactoring tech-
niques [13], preserving behaviour but changing the signature representation of
the components.

To cope with this problem the authors propose the definition of a prob-
lem/solution library of transformations, where a problem is the occurrence of
a framework refactoring and its solution is a comeback (a behaviour-preserving
transformation that defines how a compensating adaptor can be constructed).
Such comebacks are executed on an adaptation layer that makes components
inquiries adapt to the refactoring performed.

The approach builds automatically binary (component-to-component) adap-
tors, so it can be classified as runtime, automatic adaptation.

The work Feature Dependent Coordination and Adaptation of Component-
Based Software Architectures was presented by his author Hassan Gomaa from
the George Mason University. It addresses software adaptation in the field of
product lines. Feature modeling is an important aspect of product line engineer-
ing since it captures the product line variability in terms of common, optional

Practical Approaches for Software Adaptation 161

and alternative features [I4]. Common features are mandatory in all product line
members, optional features are mandatory only for some specific product line
members, and alternative features denote that a choice of features is available.
There can be also dependencies between features, such as mutual exclusion.
Deriving new elements of a product line can be conceived as adapting an ex-
isting element for supporting a different set of features. The paper describes
how feature-dependent coordination is well suited to coordinate and adapt dis-
tributed component based software architectures. Hence, it can be considered as
manual and design time adaptation.

Finally, Michael Haupt from the University of Postdam presented his work
Disentangling Virtual Machine Architecture developed with his colleagues from
the University of Victoria. The work faces the problems derived from the code
and feature tangling in the implementation of virtual machines. The authors
have analysed the design and implementation of several virtual machines ver-
ifying the existence of many crosscutting concerns which create dependencies
between modules that usually are hardwired inside the modules involved [I5].
This fact leads to virtual machines which are not easily evolvable and adaptable
making difficult the adaptation of the applications running on them. To solve
this problem, the work proposes organizing virtual machines architecture based
on service modules, which are modules constituting well-defined services pro-
vided by the virtual machine to the applications being run on it. The interaction
and the coordination between modules as well as the crosscutting concerns are
implemented using aspect-oriented programming techniques.

In this approach aspects are generated manually, too, so it can be considered as
non-automatic adaptation. Aspects can be applied both at compile and runtime.

3.3 Adaptation Techniques and Tools for Specific Platforms

The last group of papers presented tools and techniques for practical adaptation
for some specific implementation platforms such as JBoss, or .NET, and for
context-aware systems.

The first paper in this category (Invasive Patterns: Aspect-Based Adapta-
tion of Distributed Applications) came from Ecole de Mines de Nantes, and was
presented by Luis Daniel Benavides Navarro. He argued that in contrast with
sequential or parallel software systems, in massively distributed systems software
patterns are not frequently used due to the lack of flexibility in their definition.
Dealing with this problem the authors propose their model of Invasive Patterns
that support the modular definition and adaptation of distributed applications.
The need for Invasive Patterns is motivated in the context of the JBoss Cache,
a software product for caching frequently accessed Java objects in order to im-
prove the performance of e-business applications. The language support for In-
vasive Patterns, and an implementation of such language based on AWED [I6]
—an aspect-oriented programming language explicitly addressing distribution
issues— are also sketched in the paper. The authors are currently extending
their work by augmenting the expressive power of the patterns, optimizing their
implementation and exploring their formal properties.

162 C. Canal, J.M. Murillo, and P. Poizat

Invasive Patterns are conceived at design time. Consequently this approach
can be classified as design time manual adaptation.

The next paper in this group —On Run-time Behavioural Adaptation in
Context-Aware Systems— came from the University of Malaga, and was pre-
sented by Javier Camara. This work was accepted for the ECOOP’2007 work-
shop on Model-Driven Adaptation (M-ADAPT), but since it fell in the scope
of both workshops we found interesting to have it presented also at WCAT,
and decided jointly with the organizers of M-ADAPT the double submission of
the work. For this reason, only a short abstract appears in the proceedings of
WCATO07, but the full paper can be found in the website of the workshop.

Context-Aware computing [I7] studies the development of systems which ex-
ploit context information (e.g., user location, network resources, time, etc.),
which is of special relevance in mobile systems and pervasive computing, where
the execution environment of the system is likely to change at runtime. Hence, an
appropriate adaptation of the components does need to reflect all these environ-
mental changes which might affect system behaviour. In order to support these
unpredictable changes, the authors advocate for the use of variable adaptation
policies between an arbitrary number of components, depending on the current
execution state of the system. The work considers additional policies which may
depend exclusively on context changes (i.e., context-triggered actions).

The approach simplifies the complexity of mapping specification relying on
the principle of separation of concerns, and avoids the costly off-line generation
of adaptors, adapting components at runtime by means of a composition en-
gine which manages dynamically communications within the system. A compo-
sition/adaptation model was presented, sketching some general implementation
questions. The proposal was illustrated by a case study: a wireless medical in-
formation system. The main perspective of the work is to implement the whole
proposal in a middleware using dynamic AOP. This enables to shape up the
composition engine as aspects able to: (i) intercept service invocations between
components; (i) apply the composition process with respect to the adaptation
mapping in order to make the right message substitutions, and (iii) forward
the substituted messages to their recipients transparently. From this point of
view, the approach can be considered as an automatic and dynamic software
adaptation technique.

Finally, the last presentation was a joint work from the University of Malaga
and INRIA, presented by Carlos Canal. Its title was Relating Model-Based Adap-
tation and Implementation Platforms: a case study with WEF/.NET 3.0, and
again was a double submission presented both at WCAT07 and WCOPO07, the
workshop on Component-Oriented Programming, whose proceedings contain the
full text of the work. As many current software adaptation proposals, it deals
with the behavioural interoperability level, but in this case the focus is put in
relating the proposal with an existing implementation platform, in this case Mi-
crosoft’s Windows Workflow Foundation (WF) [I8], which allows most of the
code of the adaptor to be automatically generated.

Practical Approaches for Software Adaptation 163

This work presents an adaptation procedure starting from the extraction of
behavioural interfaces from WF workflows and their representation using labelled
transition systems (LTS). By comparing the LTSs of the components, signature
and behavioural mismatch can be detected, and a mapping solving the mismatch
is (manually) given. Then, an adaptor LTS is generated following an automated
procedure [I9], and from that, the skeleton of the WF orchestrator solving the
mismatch is generated. The proposal was illustrated by means of a case study:
an on-line computer sale system.

The proposal can be classified as a semi-automatic approach to behavioural
adaptation, performed at design time.

4 Conclusions of the Workshop

After the presentations, the participants were divided into groups in order to
discuss the different issues raised during the workshop. As a summary of the
discussions, we identified the following open issues, that can be considered as a
road map for future research work in software adaptation, and as hot topics to
be addressed in future editions of the WCAT workshop:

— Domains of adaptation. Coordination and adaptation are always related
to software interaction. The way in which software components interact is
closely related to the structuring technique chosen for the system, used
both as a mix of divide-to-conquer, in order to rule complexity out, and
for promoting component reuse. Hence, it must be analyzed which are the
structuring techniques and paradigms of coordinated/adapted systems that
software engineering researchers and developers are currently dealing with.
The papers presented in the workshop dealt with component-based systems,
service-oriented systems, user interfaces, etc. It should be determined what is
specific to these paradigms and what are generic issues in Software Adapta-
tion. New trends, like Autonomic Computing [20], or the use of Model Driven
Architecture/Engineering (MDA /MDE) [21] must also be considered.

— Adaptation viewpoints. Which are the problems solved and at which in-
terface level? In addition to the four interoperability /adaptation levels (sig-
nature, behavioural, service, semantics) detected and characterized in [§],
some other adaptation problems (user interfaces, software refactoring, etc.)
have been addressed by the papers presented at the workshop. What are the
possible solutions to these new adaptation problems and how the different
solutions may be combined? An idea would be to define “modules” of model-
based adaptation and coordination at the different levels, and then combine
them, but the latter remains an important open issue in the field of Software
Adaptation.

— Adaptation time. Should mismatch detection, adaptor model generation,
and adaptor implementation be performed at design time, deployment time,
or runtime? Which are the points in favor and against the time chosen for
making the adaptation?

164 C. Canal, J.M. Murillo, and P. Poizat

The works presented during the WCAT07 workshop give a broad view of
current practical adaptation techniques for solving the different problems that
appear during the composition of different kinds of systems. These approaches
are summarized in this workshop report. As a result of the workshop, a special
issue in the Journal of Universal Computer Science (JUCS) is being prepared.
The participants of the workshop were invited to submit extended technical
versions of their papers to the special issue, and a public call for papers has also
been launched in order to attract contributions out of these presented in the
WCATO07 edition. The special issue is scheduled to be published in the September
2008 issue of JUCS.

References

1. Arbab, F.: What Do You Mean Coordination? In: Bulletin of the Dutch Association
for Theoretical Computer Science (NVTT) (1998)

2. Canal, C., Murillo, J.M., Poizat, P.: Software adaptation. L’Objet 12(1), 9-31
(2006)

3. Becker, S., Canal, C., Diakov, N., Murillo, J.M., Poizat, P., Tivoli, M.: Coordination
and Adaptation Techniques: Bridging the Gap Between Design and Implementa-
tion. Report on the Third WCAT Workshop. In: Siidholt, M., Consel, C. (eds.)
ECOOP 2006 Ws. LNCS, vol. 4379, pp. 72-86. Springer, Heidelberg (2007)

4. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, London (1998)

5. Bieberstein, N., et al.: Service-Oriented Architecture (SOA) Compass. Pearson,
London (2006)

6. World-Wide Web Consortium (W3C): Web Services Architecture. Technical Re-
port (2004), available at, http://www.w3.org

7. Canal, C., Murillo, J.M., Poizat, P. (eds.): WCAT 2007. Fourth International Work-
shop on Coordination and Adaptation Techniques for Software Entities (2007),
Available at http://wcat.unex.es/

8. Canal, C., Murillo, J.M., Poizat, P.: Coordination and Adaptation Techniques
for Software Entities. Report on the First WCAT Workshop. In: Malenfant, J.,
@stvold, B.M. (eds.) ECOOP 2004. LNCS, vol. 3344, pp. 133-147. Springer, Hei-
delberg (2005)

9. OpenLaszlo: An Open architecture Framework for Advance Ajax Applications
(white paper). Technical Report (2006), available at, http://www.openlaszlo.org

10. Ceri, S., et al.: Designing Data-Intensive Web Applications. Morgan Kaufmann,
San Francisco (2002)

11. Fillman, R., et al. (eds.): Aspect-Oriented Software Development. Addison-Wesley,
London (2005)

12. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

13. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley,
London (1999)

14. Gomaa, H.: Designing Software Product Lines with UML: from Use Cases to
Pattern-based Software Architectures. Addison-Wesley, London (2005)

15. Griswold, W., et al.: Modular sofware design with crosscutting interfaces. IEEE
Software 23, 51-60 (2006)

http://www.w3.org
http://wcat.unex.es/
http://www.openlaszlo.org

16.

17.

18.

19.

20.

21.

Practical Approaches for Software Adaptation 165

Benavides-Navarro, L.D., Siidholt, M., Vanderperren, W., Fraine, B.D., Suvée, D.:
Explicitly distributed AOP using AWED. In: AOSD 2006. Proc. 5th Int. ACM
Conf. on Aspect-Oriented Software Development, pp. 51-62. ACM Press, New
York (2006)

Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE
Workshop on Mobile Computing Systems and Applications. IEEE Computer So-
ciety Press, Los Alamitos (1994)

Scribner, K.: Microsoft Windows Workflow Foundation: Step by Step. Microsoft
Press (2007)

Canal, C., Poizat, P., Salaiin, G.: Synchronizing behavioural mismatch in soft-
ware composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037. Springer, Heidelberg (2006)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36, 41-51 (2003)

Schmidt, D.: Model-driven engineering. IEEE Computer 39, 25-31 (2006)

Quantitative Approaches in Object-Oriented Software
Engineering
Report on the 11" Workshop QAOOSE at ECOOP 2007

Yann-Gaél Guéhéneuc', Christian F.J. Lange?, Houari A. Sahraoui',
Giovanni Falcone3, Michele Lanza®*, Coral Calero®, and Fernando Brito ¢ Abreu®

! Department of Computer Science and Operations Research,
Université de Montréal — Canada
2 Software Engineering and Technology Group,
Eindhoven University of Technology — The Netherlands
3 Lehrstuhl fiir Softwaretechnik
Universitdt Mannheim — Germany
4 Faculty of informatics,

University of Lugano — Switzerland

5 Department of Computer Science,

Escuela Superior de Informatica of the Castilla-La Mancha University — Spain

5 Department of Computer Science,

Lisbon New University — Portugal

Abstract. The QAOOSE 2007 workshop brought together, for half day, resear-
chers working on several aspects related to quantitative evaluation of software
artifacts developed with the object-oriented paradigm and related technologies.
Ideas and experiences were shared and discussed. This report includes a sum-
mary of the technical presentations and subsequent discussions raised by them.
Exceptionally this year, one of the founders of the workshop, Horst Zuse, gave a
keynote on the Theoretical Foundations of Object-Oriented Measurement. Three
out of the four submitted position papers were presented, covering different as-
pects such as measuring inconsistencies, visualizing metric values, and assessing
the subjective quality of systems. In the closing session, the participants discussed
open issues and challenges arising from researching in this area and tried to fore-
cast what will be hot research topics in the short and medium terms.

1 Introduction

Measures of software internal attributes have been extensively used to help software
managers, customers, and users to characterize, assess, and improve the quality of soft-
ware products. Many software companies have intensively adopted software measures
to increase their understandability of how (and how much) software internal attributes
affect the overall software quality. Estimation models based on software measures have
successfully been used to perform risk analysis and to assess software maintainabil-
ity, reusability, and reliability. Although most of known work applies to object-oriented
software, it is also desirable to find measures for component-based software (CBS) and

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 166}-170./2008.
(© Springer-Verlag Berlin Heidelberg 2008

Quantitative Approaches in Object-Oriented Software Engineering 167

aspect-oriented development, and for web-based software (WBS), model-based devel-
opment, in general.

Submissions were invited, but not limited, to the following topics, organized in four
areas:

Metrics collection, including support and standards for sharing research hypothe-
ses, data and results; evaluation of metric collection tools; metric values visualiza-
tion; evolutionary software metrics collection and validation.

— Quality assessment, including Measuring non-functional requirements of OO sys-
tems; metric-based reengineering; quantitative assessment of OO analysis/design
patterns, frameworks, aspect-oriented systems, agent-based Web services.

— Metrics validation, including meta-level metrics; formal and empirical validation;
measurement Theory; validation techniques and their limits.

— Process management, including reliability and rework effort estimates based on

design measures; quantitative tracking of OO, web services, and CBS development;

empirical studies on the use of measures for process management.

The workshop was specifically scheduled to increase fruitful interactions and discus-
sions. Participants were requested to submit a contribution in advance. Each participant
was expected to read the material submitted by the other participants, so that all partic-
ipants are acquainted with the ideas that exist within the group and that the workshop
could be devoted to discussions instead of presentations. After a short welcome session
during which participants introduced themselves, Horst Zuse gave a one-hour keynote
on the theoretical foundations of object-oriented measurement [1]]. Then, three position
papers were presented. The position papers are published in the workshop proceed-
ings [2]]. Finally, all participants discussed the presented work and future work.

2 Keynote: Horst Zuse

Theoretical concepts behind software measures and software measurement are neces-
sary in order to have a precise qualitative interpretation of the numbers [3]]. In this
presentation it was shown, that the properties of software measures for imperative and
object-oriented measurement are different. While measures for imperative languages
very often assume the extensive structure, object-oriented measures do not assume this
measurement structure. This shows, that behind the object-oriented concept of software
development another paradigm is hidden than behind imperative languages. Software
measures reflect these different paradigms.

3 Keynote: Giovanni Falcone

The goal of developing an ordering technique for a large scale software component
search engine is mainly comprised of two majors steps. In a first step a search request
is defined by a user. Several techniques are used in practice, reaching from the simple
definition of keywords toward the definition of interfaces a particular component should
fulfill. In general, the similarity of the components to the given search request are calcu-
lated and used as a primary step in the ordering of the components in the results list. In

168 Y.-G. Guéhéneuc et al.

the literature several solutions for measuring a similarity are given. However, depending
on the level of abstraction a given request is made, two extremes are found:

— The result set is comprised of components where all of them have a different simi-
larity and the primary ordering technique is sufficient.

— The result set is comprised of one large subset where all of the entities within have
the same similarity measure.

Even if in practice the abstract view on the constitution of the result set lies some-
where in between, it shows that the primary ordering based on a similarity measure is
not sufficient. By mainly using an interface driven driven search, where an interface
is used as basis for the search request, the first step of ordering the results is given by
measuring the conformance of the functional properties of the components to the ones
of the defined interface. In a second step non-functional properties need to be taken into
account, where software measures seem to be the most valuable ones. Therefore a set
of software measures have been calculated for more than 3 million Java based source
code components and the results have been further investigated.

In the literature criticism that several software measures show a correlation to other
measures is found. In general, the results described in the literature are mainly based
on small to medium sized projects. For the purpose of building a second level ordering
technique in a software component search we further investigated the behavior of the
correlation between some basic software measures.

We presented an overview of the correlation coefficients of a set of about 30 software
measures and have shown that a strong correlation between mostly all of the complexity
measures investigated has been found (LOC, cyclomatic complexity, number of state-
ments, number of executable statements, number of branch statements, and the number
of methods) using the Brevais-Pearson as well as the Spearman rank correlation coef-
ficient. The same results have been found for all of the measures of the Halstead suite
where the Breavis-Pearson correlation coefficient was slightly below the Spearman cor-
relation coefficient, except the Effort measure indicating a very weak correlation for the
Breavis-Pearson turning in a strong correlation for the rank based correlation.

Based on the presented results, further steps of analyzing the data have been dis-
cussed comprising the dimensional reduction using a principal component and a clus-
tering analysis based on the principal components. Next steps have be identified, one of
them including a mapping of responsibilities to the clusters found.

4 Position Papers

4.1 Paper: Inconsistencies of Metrics in C++ Standard Template Library

Authors: by Zoltdn Porkoldb, Addm Sipos, and Norbert Pataki. Since McCabe’s cyclo-
metric measure, structural complexity have been playing an important role measuring
the complexity of programs. Complexity metrics are used to achieve more maintainable
code with the least bugs possible. C++ Standard Template Library (STL) is the most
popular library based on the generic programming paradigm. This paradigm allows
implementation of algorithms and containers in an abstract way to ensure the config-
urability and collaboration of the abstract components. STL is widely used in industrial

Quantitative Approaches in Object-Oriented Software Engineering 169

softwares because STL’s appropriate application decreases the complexity of the code
significantly. Many new potential errors arise by the usage of the generic programming
paradigm, including invalid iterators, notation of functors, etc. In this position paper, the
authors present many complexity inconsistencies in the application of STL that a pre-
cise metric must take into account, but the existing measures ignore the characteristics
of STL.

4.2 Paper: Automatic Generation of Strategies for Visual Anomaly Detection

Authors: Salima Hassaine, Karim Dhambri, Houari Sahraoui, and Pierre Poulin. An
important subset of design anomalies is difficult to detect automatically in the code be-
cause of the required knowledge. Fortunately, software visualization offers an efficient
and flexible tool to inspect software data searching for such anomalies. However, as
maintainers typically do not have a background in visualization, they often must seek
assistance from visualization expert. This position paper proposes an approach based
on taxonomies of low-level analytic tasks, interactive tasks, and perceptual rules to de-
sign an assistant that helps analysts to effectively use a visualization tool to accomplish
detection tasks.

4.3 Paper: Perception and Reality: What Are Design Patterns Good for?

Authors: Foutse Khomh and Yann-Gaél Guéhéneuc This position paper presents a study
of the impact of design patterns on quality attributes. An empirical study was per-
formed by asking respondents their evaluations of the impact of all design patterns on
several quality attributes. Additionally, detailed results for three design patterns (Abstract
Factory, Composite, and Flyweight) and three quality attributes (reusability, understand-
ability, and expendability) were presented. The authors reported on a Null hypothesis test
and concluded that, contrary to popular beliefs, design patterns do not always improve
reusability and understandability, but that they do improve expendability.

5 Discussions

The informal discussions focused on the following subjects:

Semantics of measures and how to take semantics of programs into account.

In metrics visualization, mapping between graphical attributes and some measures,
such as DIT.

Study of community-based preferences that go against “common” sense and vali-
dation.

Taking into account participants’ experience and the languages used.

Future directions of research. The participants concluded on the need to perform an
extensive survey of the literature on the use of metrics and how validation evolve over
time. The agreed to divide the work among the participants to create tooling to identify
the relevant papers (in PDF) and extract automatically pertinent information from these
papers. This work is currently being pursued.

170 Y.-G. Guéhéneuc et al.

References

1. Zuse, H.: A Framework of Software Measurement. Walter de Gruyter, Berlin (1998)

2. e Abreu, F.B., Calero, C., Guéhéneuc, Y.G., Lange, C.F.J., Lanza, M., Sahraoui, H.A., Ce-
bulla, M. (eds.): QAOOSE 2007. Proceedings of the 11the ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering Forschungsberichte der Fakultit IV —
Elektrotechnik und Informatik. Technische Universitit Berlin (2007)

3. Zuse, H.: Foundations of object-oriented software measures. In: METRICS 1996. Proceedings
of the 3rd International Symposium on Software Metrics, p. 75. IEEE Computer Society Press,
Los Alamitos (1996)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of reusable
Object-Oriented Software. Addison-Wesley, London (1994)

Object Technology for Ambient Intelligence and
Pervasive Computing
Report on the OT4AmI-Workshop at ECOOP 2007

Jessie Dedecker™2*, Eric Tanter®**, Holger Miigge?,
Cristina Videira Lopes?, and Pascal Cherrier®

! PROG Lab, Vrije Universiteit Brussel, Belgium
2 PLEIAD Lab, Computer Science Dept (DCC), University of Chile, Chile
3 University of Bonn, Germany
4 University of California, USA
5 France Telecom, France

Abstract. This report summarizes the main activities held during the
third workshop on object-technology for Ambient Intelligence and Per-
vasive Computing. The goals of this workshop series are to identify and
discuss the impact of Ambient Intelligence on object-oriented technolo-
gies and vice versa. This report summarizes the scope of the workshop as
well as the contents of the presented position papers, the discussions pro-
voked by these papers and the brainstorm sessions that followed the pre-
sentations. In particular, groups of participants actively discussed issues
such as context volatility, development process, and user involvement in
adaptable applications.

1 Introduction

Computing technology is no longer uniquely associated with mainframes or desk-
top computers. Due to the technological advances computing technology has
become so small and cheap that it can be embedded in everyday devices such
as cars, toys, furniture and even clothes. This integration of technology with
everyday devices, which is also known as “ubiquitous computing”, “pervasive
computing” and “ambient intelligence”, enables new types of applications and
requires a model of interaction that is less intrusive than the traditional desk-
top model of computing. The idea is that everybody will be surrounded by a
dynamically-defined processor cloud, of which the applications are expected to
cooperate smoothly. This technological setting puts new challenges on the soft-
ware. Software should take into account the context in which it operates and
adjust its behavior as its ambient context changes over time. Context changes
are provoked due to the mobility of the users and the devices. Devices form
a large-scale distributed system that communicates using wireless technology.

* J. Dedecker is partially funded by FONDECYT project 3080020.
** K. Tanter is partially financed by the Millennium Nucleus Center for Web Research,
Grant P04-067-F, Mideplan, Chile, and FONDECYT Project 11060493.

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 171 2008.
© Springer-Verlag Berlin Heidelberg 2008

172 J. Dedecker et al.

The use of wireless technology and limited energy resources implies that the dis-
tributed software system will be subject to a higher rate of failures as compared
to a traditional distributed system. Other issues such as security, privacy, new
interaction models, limited resources and others also have a high impact on the
design and implementation of software.

2 Scope of the Workshop

2.1 Goals

Important goals of the workshop were to identify and discuss the impact of
Ambient Intelligence on object-oriented technologies and vice versa, and to out-
line fruitful paths for future research concerning the connection between Am-
bient Intelligence and object-oriented programming languages and systems. In
this context, we understand the term “object technology” to cover the whole
range of topics that have evolved around the notion of object-orientation in the
past decades, starting from programming language design and implementation,
ranging over software architectures, frameworks and components, up to design
approaches and software development processes.

2.2 Topics

In the call for participation, the following non-exhaustive list of potential topics
was included: programming models, reflection, security, software adaptation, con-
text modeling, engineering of autonomous systems, biologically-inspired concepts,
human-device and device-device interaction. We accepted eight workshop papers
discussing various topics such as distributed memory management, mobile agents,
and rule-based systems to support the development of ambient intelligent systems.

2.3 Workshop Organization

The workshop format was chosen to promote discussions on the topics set for the
workshop. In order to accommodate this format we asked the authors to prepare
short (with a maximum of ten minutes) presentations where they would defend
the position of their paper. Hence, the goal was not to elaborate on the technical
details of their work but rather defend their vision on how software for ambient
intelligence should be developed. In preparation of the workshop we asked all
participants to read the accepted papers. The positions of the accepted papers
were presented in the morning. The afternoon session was used to brainstorm
on emerging topics resulting from the paper discussions.

3 Summary of Position Paper Discussions

In the paper session each principal author defended the position of his paper in
a short (under ten minutes) presentation. After the presentation there were two
discussion rounds. In the first round of discussions two participants were selected:

Object Technology for Ambient Intelligence and Pervasive Computing 173

one participant had to argue in favor of the position whereas the other participant
had to argue against the position. In this process the presenter was not allowed
to intervene and could only act as an observer. The second discussion round
enabled participants to ask questions to the presenter and gave the presenter
the opportunity to react to remarks made in the first discussion round. This
section presents the abstracts of the submitted position papers and summarizes
the discussions that followed the presentations. These papers are included in the
workshop proceedings [4], and can be downloaded from the workshop’s home
page at http://sam.iai.uni-bonn.de/ot4ami2007/

3.1 Introducing Context-Awareness in Applications by
Transforming High-Level Rules [5]

In the last years, we have witnessed the increase in the popularity and capa-
bilities of mobile technologies. This evolution has enforced the idea of smart
environments, in which devices are aware and able to react to changes in their
environment. In this position paper we describe a specific approach for the de-
velopment of context-aware software. We propose to make existing applications
context-aware by means of three main components: context models, high-level
rules and code-generation processors. We present each component and analyze
the issues related to the development of context-aware software following this
strategy.

Arguments Pro. A generational approach has advantages because it enables
separation of concerns: the context specific behavior is generated and compiled
into the application. Also, the rules that determine when the context specific
behavior should be enabled are separated from the base application. The rules
encapsulate the adaptations to the base applications.

Arguments Contra. Is it possible to use a generational approach without the
requirement that the application has to be refactored? The quality of the base
application code affects the efforts that will be required to adapt the code with
context information. The proposed use of annotations seems to conflict with the
base application developer being unaware of the context adaptations that will be
required. Conflicts can arise when different context adaptations affect the same
application behavior.

3.2 Reasoning about Past Events in Context-Aware Middleware [6]

The miniaturization of computational devices like for instance mobile phones
have caused a revolution in every day life. With the use of a variety of standard
technologies like infrared, bluetooth and wifi, we are able to interconnect these
devices in a mobile ad hoc network. These technologies bring us closer to the
vision of Weiser where persons are surrounded by a cloud of small devices co-
operating with each-other and adapting themselves to their context. As these
small devices can go out of earshot at any moment in time, these disconnections

174 J. Dedecker et al.

cause important changes in the perceived contextual information. The Fact Space
Model is a coordination model which gives the user fine-grained control over the
effects of disconnection and thus over changes in the perceived context. However,
this model does not incorporate the loss of useful information from the past. For
example when we have used a service in the past, this information might even
be relevant when this service is currently not available. In order to overcome
the loss of useful information we have extended our Fact Space Model with
temporal operators capturing exactly this relevant information an application
might need in the future. In order to let applications better adapt their behaviour
to the current context, we advocate the use of this logic coordination language
incorporated with temporal operators.

Arguments Pro. Looking back at history is fundamentally a good idea. Look-
ing back at what one has done is important to understand what is relevant
for taking the decision of what to do now. Problems such as circular triggering
of rules can be easily addressed by preprocessing/analyzing the temporal logic
statements.

Arguments Contra. Using logic programming is confusing for end users be-
cause they must be able to understand how to describe the behavior of their
application. The current approach generates too much mental overhead on the
user that defines the rules. Finding a manner to express the rules in a more
convenient way is needed. Especially the temporal operators seem unintuitive to
interpret.

3.3 Context-Aware Leasing for Mobile Ad Hoc Networks [3]

Distributed memory management is substantially complicated in mobile ad hoc
networks due to the fact that nodes in the network only have intermittent con-
nectivity and often lack any kind of centralized coordination facility. Leasing
provides a robust mechanism to manage reclamation of remote objects in mo-
bile ad hoc networks. However, leasing techniques limits the lifetime of remote
objects based on timeouts. In mobile networks, we also observe that devices need
to continuously adapt to changes in their context. In this position paper, we ar-
gue that changes in context not only require adaptation in the behaviour of the
application but also permeate to distributed memory management, leading to
the concept of context-aware leasing.

Arguments Pro. The presented approach contributes to a field that has been
mainly focussing on the use of timeouts. Involving context information in the
memory reclamation process is interesting because it enables memory manage-
ment to not only be guided by non-functional concerns but also application-
specific details. Another interesting approach is to involve the user in the process
of determining which remote objects may be reclaimed.

Arguments Contra. The expressiveness of the presented approach seems lim-
ited. Is it possible to use more expressive formalisms to determine whether ob-
jects can be reclaimed? The problem is that time is not an expressive means to

Object Technology for Ambient Intelligence and Pervasive Computing 175

define memory reclamation rules. Also, manual memory management strategies
have been abandoned in many popular programming languages today. In this
regard it seems odd that one is interested to introduce it again because it’s an
extra burden for the developer.

3.4 Aml: The Future Is Now [2]

Because of the unique nature of the AmI domain, specifically the high amount of
industrial involvement in this area, we fear that a classical long-term scenario for
the use of academic research is no longer valid. In this paper we argue that the
Aml research community should adapt to this context. To do this, we consider
a short-term approach, and raise some points for discussion.

Arguments Pro. It is true that in the domain of Ambient Intelligence we
are not fast enough to do relevant contributions. The available manpower in
academic institutes is limited compared to the available manpower in industrial
projects. Another advantage found in industry is that they are focussed on “real
world” problems whereas academics sometimes do not have such a focus.

Arguments Contra. The presented perspective of what happens in industrial
context is too pragmatic. There are no criteria for evaluating the manner in which
problems are solved. It is difficult to compare industrial to academic approaches
because in an industrial approach the main goal is make things work whereas the
main focus in academic research is to find better methods to make things work.

3.5 Ambient-Oriented Programming in Fractal [7]

Ambient-Oriented Programming (AmOP) comprises a suite of challenges that
are hard to meet by current software development techniques. Although
Component-Oriented Programming (COP) represents promising approach, the
state-of-the-art component models do not provide sufficient adaptability towards
specific constraints of the Ambient field. In this position paper we argue that
merging AmOP and COP can be achieved by introducing the Fractal compo-
nent model and its new feature: Component-Based Controlling Membranes. The
proposed solution allows dynamical adaptation of component systems towards
the challenges of the Ambient world.

Arguments Pro. The approach promotes separation of concerns: adaptation
of the component is separated from the business code. As a consequence both the
adaptation and the business code can evolve independently from one another.
The adaptations are encapsulated at the membrane level. The manner in which
the membrane controls the business code and how it can hook into the business
code can be based on quantitative approaches found in AOP.

Arguments Contra. It is hard to support independent evolution of the busi-
ness code and the adaptations because there can be composition conflicts. Fur-
thermore, easy composition of the adaptations with the business code depends

176 J. Dedecker et al.

on the quality of the code. Code that has been well structured will be more easy
to compose vs. code that lacks the right structures. Another issue is where to
put the code that deals with multiple conflicting adaptations. This is a hard
problem because of the separation of the business code and the adaptations.

3.6 Dealing with Ambient Intelligence Requirements [§]

Ambient Intelligence is characterized by a heterogeneous and highly dynamic in-
frastructure. In this paper we present requirements that we identified for develop-
ing applications for Ambient Intelligence scenarios. We sketch our own approach
based on self-adaptive mobile processes that makes application development a
manageable task and fulfills parts of these requirements.

Arguments Pro. The presented work is pragmatic because it combines several
established methods to solve problems in a new field. Furthermore, the solution
proposes to automate many of the individual steps. For example, the BPEL
code that is being generated. Another advantage of this approach is that the
code generator can be “trusted” as opposed to individual developers deploying
their component in the system.

Arguments Contra. It is not clear whether it is possible to really address the
intricacies of such applications at a higher level. For example, where is the devel-
opment taking place? It is impossible to automate all steps in the development
process. Furthermore, it is unclear how the presented model supports evolution
of the code. In order to support such a system it is important to have a good
mapping between high-level (models) and low-level (code) artifacts. This is es-
pecially important in the debugging phase of the application. In the debugging
process it needs to be clear whether the cause of the problem is related to the
code or the models.

3.7 Proximity Is in the Eye of the Beholder [I]

The notion of proximity is a key to scalable interactions in distributed systems of
any kind, both natural and artificial, and in particular in pervasive computing en-
vironments. However, proximity as such is a vague notion that can be considered
both in a very factual manner (spatial distance) and in a very subjective manner
(user affinity). We claim that an adequate system or programming language for
ambient intelligence applications ought to support an open notion of proximity,
making it possible to rely on different, possibly subjective, understandings of
proximity, as well as their combinations.

Arguments Pro. It is good to have a more general notion of proximity. Perhaps
physical proximity can be used as a starting point for the objective dimension
because physical proximity can rely on a metric system that is widely accepted.
Starting from this definition the middleware or language can then support further
customization and enable the introduction of other such notions.

Object Technology for Ambient Intelligence and Pervasive Computing 177

Arguments Contra. The dimension of physical proximity is merely one case.
One could argue that physical proximity is encompassed in the abstract proxim-
ity. The distinction objective vs. subjective definitions of proximity seems good.
However, it is unclear whether it is possible to integrate subjective definitions
and it seems much more convenient to choose one shared definition.

4 Discussion on Emerging Topics

During the afternoon brainstorm sessions three subjects were selected based on
an iterative agreement process. Each participant proposed three subjects. After
that three groups of three participants were formed and within these groups the
participants had to agree on a single topic. The selected topics and the following
breakout discussions are briefly summarized below:

4.1 Context Volatility

Group: Elisa Gonzalez Boix, Christophe Scholliers, Eline Philips, Peter Barron,
Jessie Dedecker

The goal of this brainstorm session was to identify the different types of
context volatility and to discuss how the software system should deal with its
consequences.

Types of Context Volatility

Accuracy. Every sensor has a fault margin and can provide inaccurate readings.
Ideally, readings with an unacceptable error margin should be filtered or weighed
with the other readings.

Timeliness and Freshness. The frequency by which a sensor is read is important
w.r.t. the freshness of the data. Some sensors require a substantial amount of time
to be read and can require a substantial amount of energy. As a consequence,
continuously reading the sensor is not always possible such that a tradeoff has to
be made between the frequency at which a sensor is being read and the timeliness
of the sensor data.

Source of Information/Trust. Sensor data delivered from third party components
in a distributed context brings the risk that the data can be forged.

Concurrent Transactions in Contert. Determining context based on multiple
sensor sources that are not necessarily read at the same point in time implies
that the determined context can be inaccurate.

Impact of Context Volatility on Software

Where is the volatility exposed? An important consideration is at what level to
expose the volatility of context. A first option is to expose it at the lowest level,

178 J. Dedecker et al.

where the context is being derived. At this level inaccuracies and faulty readings
could be filtered away by weighing the results. However, there is probably no
common strategy that fits all application requirements. Another manner to deal
with context volatility is to introduce context as a first-class concept in the mid-
dleware and provide hooks such that an application is exposed to the context
volatility. Regarding context volatility as a first-class concept would involve ex-
posing details such as the sensor specifications w.r.t. accuracy, the sources that
were used to derive the detected context information and the sensor and the
freshness of the sensor data.

How to deal with concurrent transitions in context? While context-dependent
code is executing it is possible that a change in context is detected. Dealing
with such concurrent adaptations is not trivial. One option is to introduce
the concept of atomic adaptations and process context-dependent actions as
non-interruptible events. Another option is to consider context-dependent ac-
tions from a transactional perspective. Whenever the context changes during a
context-dependent action a roll back could undo previous computations before
adapting to the new context.

Approaches to deal with Volatility. When dealing with context volatility at a
lower level the history of sensor data becomes an important resource. The his-
tory is important because it is useful to determine what sensor data should be
considered as faulty and also as a way to improve sensor readings (i.e. by weigh-
ing them against previous results). Dealing with context volatility at a higher
level could be done with meta -or aspect architectures to separate the context-
specific code from the base level. Other options are to use rule-based systems
such as logic programming to consider multiple possible context derivations.
Fuzzy logic programming could be used to explicitly consider uncertainty in the
context rules.

4.2 Responsibilities for AmI Concerns in Development Chain

Group: Carlos Parra, Ales Plsek, Guillaume Dufrene, Philip Mayer

The goal of this brainstorm session was to identify the layers found in Aml
infrastructure and to determine the responsibilities of each layer. For the brain-
storm session a number of assumptions were made: the Aml system is a dis-
tributed system that is based on an event-messaging model and there is an
established ontology for context information. The group identified five responsi-
bility layers, which are listed below in a bottom-up order:

Communication in Ambient Environments. At the lowest level, devices are com-
municating via events. These events disperse observed information about the
ambient environment to other devices in proximity of one another. These low-
level events contain information that is retrieved from sensors deployed in the
ambient environment.

Object Technology for Ambient Intelligence and Pervasive Computing 179

Context Construction. At the next level the events containing low-level sen-
sor information are picked up and combined into context events that are more
meaningful and better match the domain of the application. At this level sen-
sor resolution techniques can also be employed to deal with inaccurate sensor
readings.

Context Reason. After the establishment of meaningful context events it becomes
possible to further reason about this context information and derive the context
semantics of the ambient environment.

Application (business logic). The application layer expresses the core semantics
of the Aml systems and is influenced by the context reasoning engine that feeds
facts about the physical environment to the application.

User. The user layer is responsible for tracking the user’s preferences. This infor-
mation can be either explicit or implicit. Explicit preferences are unambiguously
chosen by the user whereas implicit preferences can be derived by observing a
user’s behavior.

4.3 On User Involvement in Adaptable Applications

Group: Carlos Noguera, Guido Sélduer, Holger Schmidt, Eric Tanter, Ellen Van
Paesschen

This group discussed the issue of user involvement in adaptable applications.
A lot of work is dedicated to build adaptable programs, but most of the time,
this adaptation is foreseen and/or specified by the programmers. How can actual
end users be involved in the adaptation process? What consequences does this
have on the techniques to adopt for developing the system?

Spectrum of Involvement. User involvement in adaptation can be seen as a spec-
trum, with fully transparent and oblivious adaptation on one extreme, and at
the other extreme, the user has to configure every adaptation explicitly. The first
extreme has the disadvantage of being obscure for the user, while the latter is
obstrusive. What is needed is to address a middle ground in this spectrum.

Learning. The group discussed the idea of learning in the adaptation process.
First of all, when does learning actually start? It seems that just inference is
not enough. From a user perspective, it is interesting that a system can learn
by examples and counter-examples. This means using feedback on decisions, in
order to determine whether a particular adaptation was well received by the end
user. To this end, it is necessary to be able to support explicit declarations by
the user. Of course, there is a tradeoff in determining what parts of adaptations
can be scripted by the user, and which are not accessible.

Profiles. The group agreed that the profiles, i.e. archetypes, are a good way to
abstract away minor variability scenarios by providing a set of possible coarse-
grained alternatives. It was recognized that it is important to support both user

180 J. Dedecker et al.

profiles and application profiles. The adaptation process then consists in match-
ing a user profile to an application profile. Problems include: who is the best
indicated to find the relevant profiles of real users of a system? how can we
define archetypes in complex environments? Also, since all this is about ambi-
ent intelligence, there is a need for group-wide, collective, adaptations; in other
words, ambiental profiles, describing typical ambiental scenarios.

Engineering. Creating adaptable systems therefore requires to consider profiles
from the start. Profiles are (or are associated to) sets of transformations or ex-
tensions to apply to the system. This clearly refers to variability management,
such as product line architectures, with a particular focus on runtime variability.
But there are also additional engineering challenges if one wants to deliver sys-
tem that are capable of “offshore learning”, that is, learn new adaptations (and
discover new profiles?) once they have been delivered and are used by clients in
unforeseen ways and contexts.

5 Conclusion

This third edition of the OT4Aml workshop was particularly lively due to the
format including group work sessions. We can see that beyond the particular
details of each technical contribution discussed in the presented articles, there is
a growing concern for engineering and usability issues, such as how to distribute
responsibilities in the process of developing ambient applications, and how to
help the user drive context adaptation. As a matter of fact, users are at the center
of the ambient intelligence vision, so it is time to develop software that lets the
knowledge of end users pervade through the whole system, driving adaptations
in a consistent manner. This undoubtedly raises a huge number of challenges, of
which only a few have been briefly touched upon during the workshop.

References

1. Barron, P., Dedecker, J., Tanter, E.: Proximity is in the eye of the beholder. In:
Miigge, et al. (eds.) [4], pp. 1-6

2. Fabry, J., Noguera, C.: Aml: The future is now — a position paper. In: Miigge, et
al. (eds.) [4], pp. 13-18

3. Boix, E.G., Vallejos, J., Von Cutsem, T., Dedecker, J., De Meuter, W.: Context-
aware leasing for mobile ad hoc networks. In: Miigge, et al. (eds.) [4], pp. 7-12.

4. Miigge, H., Tanter, E., Cherrier, P., Dedecker, J., Lopes, C., Cebulla, M. (eds.):
Proceedings of the 3rd ECOOP workshop on Object Technology for Ambient In-
telligence and Pervasive Computing (OT4AmlI 2007), Berlin, Germany, Technical
Report 2007-12, Technische Universitit Berlin (July 2007)

5. Parra, C.A., D’Hondt, M., Noguera, C., Paesschen, E.V.: Introducing context-
awareness in applications by transforming high-level rules. In: Miigge, et al. (eds.)
[4], pp. 19-25

6.

7.

Object Technology for Ambient Intelligence and Pervasive Computing 181

Philips, E., Scholliers, C., Herzeel, C., Mostinckx, S.: Reasoning about past events
in context-aware middleware. In: Miigge, et al. (eds.) [4], pp. 27-32

Plsek, A., Merle, P., Seinturier, L... Ambient-oriented programming in Fractal. In:
Miigge, et al. (eds.) [4], pp. 33-38

Schmidt, F., Kapitza, R., Franz, J.H.: Dealing with ambient intelligence require-
ments — are self-adaptive mobile processes a feasible approach? In: Miigge, et al.
(eds.) [4], pp. 39-44

Pedagogies and Tools for the Teaching and
Learning of Object Oriented Concepts
Report on the 11th Workshop TLOOC at ECOOP 2007

Jiirgen Borstler! and Irit Hadar?

! Ume& University, Sweden
jubo@cs.umu.se

2 University of Haifa, Israel

hadari@mis.haifa.ac.il

Abstract. This report summarizes the results of the eleventh workshop
on pedagogies and tools for the teaching and learning of object-oriented
concepts. The focus of this year’s workshop was on desirable properties
of examples and the usage of simple tools. The workshop gathered 17
participants, all from academia, from 7 different countries.

1 Introduction

It is generally accepted that transitioning to object-oriented development implies
a paradigm shift. Compared to procedural development it requires different ways
of thinking and different ways of approaching problems. Very likely, it therefore
also requires a different way of teaching. Although the object-oriented paradigm
has become mainstream long ago, approaches for teaching introductory program-
ming courses are still heavily discussed [g].

Traditionally, programming concepts have been systematically introduced one
after one, each building nicely on the concepts already learned. Abstract and
advanced concepts, like for example modules and abstract data types, could be
handled in later courses. In the object-oriented paradigm, on the other hand, the
basic concepts are tightly interrelated and cannot easily be taught and learned in
isolation. Furthermore, the basic object-oriented concepts are on a higher level
of abstraction. Together this results in a higher threshold for the learner.

The complexity of common languages, libraries and tools add to this prob-
lem [IJ. It is therefore important to share experiences and explore ideas that can
help us to improve the teaching and learning of object technology.

This was the eleventh in a series of workshops on issues related to the teaching
and learning of object technology. Reports from previous workshops and links
to the accepted contributions of most workshops can be found at the workshop
series home pageﬂ.

The workshop format makes it possible to present and discuss actual results as
well as early ideas for approaches and tools to support the teaching and learning

! http://www.cs.umu.se/research/education/ooEduWs . html

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 182 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.umu.se/research/education/ooEduWS.html

Pedagogies and Tools 183

of object-oriented concepts. For this year’s workshop, we particularly invited
submissions on the following topics:

— successfully used exercises, examples, and metaphors;

— approaches and tools for teaching (basic) object-oriented concepts;
— approaches and tools for teaching analysis and design;

— teaching analysis and design early;

— teaching outside the CS curriculum;

— experiences with innovative CS1 curricula and didactic concepts;
— learning theories and pedagogical approaches / methods;

— misconceptions related to object technology; and

— learners’ views on object technology education.

2 Workshop Organization

Participation at the workshop was by invitation only. The number of participants
was limited to encourage lively discussions. Potential attendees were required to
submit either a full research paper or experience report, or a position paper or
vision statement.

Of the contributions submitted to the workshop, seven where selected for
presentation at the workshop; three for full formal presentation (30 minutes
each) and four for short presentations. All accepted contributions were made
available on the workshop’s home page some weeks before the workshop, to give
attendees the opportunity to prepare for the discussions.

All formal presentation activities were scheduled for the morning sessions to
get enough time for discussions around particular questions. The full workshop
program can be found in table [II

The workshop gathered 17 participants from 7 different countries, all of them
from academia. A complete list of participants together with their affiliations
and e-mail addresses can be found in table

3 Summary of Presentations

This section summarizes the main points of the presented papers and the main
issues raised during the morning discussions. Copies of the presented papers can
be obtained from the workshop’s home pageﬂ

3.1 Short Papers

Jesse Heines (University of Masachusetts Lowell, USA) presented a GUI Pro-
gramming course that focuses on the object-oriented aspects of building user
and application programmer interfaces (APIs). Jesse suggested that OOP is
best taught within a context of an application or software framework. Since the

2 http://www.cs.umu.se/” jubo/Meetings/ECO0PO7

http://www.cs.umu.se/~jubo/Meetings/ECOOP07

184 J. Borstler and I. Hadar

Table 1. Workshop program

9:00 Welcome and introduction
9:15 SHORT PAPERS
— Teaching Object-Oriented Concepts Through GUI Program-
ming,
Jesse Heines and Martin Schedlbauer, USA
— Leave out the Modeling when Teaching Object-Orientation
to Beginners,
Azel Schmolitzky, Germany
— “Consuming before Producing” as a Helpful Metaphor in
Teaching Object-Oriented Concepts,
Christian Spdh and Azel Schmolitzky, Germany
— Learners’ Views on Objects-First and Objects-Later—
Results of an Exploratory Study,
Albrecht Ehlert and Carsten Schulte, Germany

10:30 Coffee break
11:00 FULL PAPERS

— Teaching Classes’ Relations: A Walkthrough Using UML Ar-
row Methodology,
Irit Hadar and Ethan Hadar, Israel

— COINED—-Collaborative Object INteraction in EDucation,
Till Schiimmer and Petra Késters, Germany

— Improving the Viability of Mental Models Held by Novice
Programmers,
Linziao Ma, John Ferguson, Marc Roper, Murray Wood, Scotland

12:30 Lunch break

14:00 Parallel working groups

15:30 Coffee break

16:00 Parallel working groups contd.

16:30 Working group summaries and discussion
17:20 Wrap-up

17:30 Closing

strengths of object-orientation are not apparent in small applications, students
should write relatively large programs very early to get first-hand experience of
the advantages the paradigm offers. GUI programming provides a particularly
effective vehicle for this purpose, because fairly large and meaningful applica-
tions can be developed by (re-)using software from various libraries or toolkits.
GUI programs also offer the advantage of immediate feedback through tangible,
visual results.

Axel Schmolitzky (University of Hamburg, Germany) claimed that object-
oriented modeling (OOM) and object-oriented programming (OOP) should be
kept clearly separate. The first year should only deal with OOP. He based his
position on several observations of teaching OOP to novices over the last six
years. Although programming is modeling, as seen by the teacher, for the stu-
dents programming is “just” the construction of a program out of building blocks.
According to Axel, modeling in any paradigm requires a basic knowledge of the
building blocks and their relations in this paradigm. They therefore provide all
necessary models in the first semester and let students “just” implement those
models, which seems difficult enough.

Pedagogies and Tools 185

Christian Spéh (University of Hamburg, Germany) discussed the metaphor of
“Consuming before Producing” that helped his group structuring the contents
of CS1&2 courses. The basic premise of this approach is that consuming (e.g.,
sending a message) is much easier than producing (e.g., implementing a method),
in particular when producing something for the first time. Consuming or using
is an effective way to gather information, since it involves learning (this process
can be unconscious). To implement this approach, Christian and colleagues have
carefully defined consuming and producing “patterns” for most object-oriented
concepts. By investigating relations and interactions between these patterns,
more or less effective orderings of topics might be found. Experience from the
University of Hamburg shows that students can more easily access topics in
courses that are structured according to these ideas.

Carsten Schulte (Freie Universitdt Berlin, Germany) presented first results
from an empirical study investigating the differences of topic order in introduc-
tory OOP courses; objects-first versus objects-later. Two courses with identical
learning goals, but different sequencing of topics, were taught in parallel. Results
indicate differences between the two groups regarding motivation, perception of
difficulty and of relevance of different topics. Surprisingly, the objects-later group
outperformed the objects-first group in the topics related to object-orientation.
Few differences are, however, statistically significant.

3.2 Full Papers

Irit Hadar (University of Haifa, Israel) presented the “UML arrow methodol-
ogy” for supporting the selection of the most appropriate relationships between
classes in UML. The methodology defines a relationship selection process con-
sisting of a checklist together with a list of nine guiding questions. The answer
to each question (Y /N) is marked in the checklist. Depending on the answer pat-
tern, one or more relationships are appropriate. The methodology was practised
in university courses with 142 participants. Results showed that students could
identify inappropriate relationships as well as required refactoring actions using
the methodology. This helped students to gradually improve their designs.

Till Schiimmer and Petra Kosters (FernUniversitat Hagen, Germany) pre-
sented a role-based approach to foster object-oriented thinking. In particular
they wanted to refrain students from developing a “centralized mindset” (see, e.g.,
[13]). After analyzing different approaches for teaching object interaction, they
developed a tool (COINED) for engaging students in virtual object-interaction
role plays. COINED is a groupware application where each student directs a set
of objects and thereby reacts to messages sent to these objects. This idea very
much resembles CRC-card roleplays, except that COINED supports distributed
roleplays in a structured way. COINED furthermore visualizes interactions be-
tween objects. Students can even create shared artifacts. Initial experience shows
that using the system helps students to better understand the roles of objects,
in particular in the early stages of analysis/design.

186 J. Borstler and I. Hadar

Murray Wood (University of Strathclyde, Scotland) presented a study on a
constructivist-based teaching model targeting students’ mental models of refer-
ence assignment (see also [I8]). Results of the study show that tight integration
of program visualization with a cognitive conflict event, that highlights a stu-
dent’s inappropriate understanding of assignment, can help students improving
their understanding of the concept. Most participants of the study (14 out of
18) successfully changed their mental model after using the proposed teaching
model.

4 Working Group Discussions

For the afternoon sessions participants formed two working groups to discuss
specific topics in more detail. Topic selection was done before the workshop by
interacting with the participants through email to maximize the time available
for discussion during the workshop.

The following subsections summarise the results of the working group
discussions.

4.1 Simple Tools for the Teaching of Basic Object Oriented
Concepts

This group started with dissecting the title of the topic into various aspects that
where then discussed separately; simplicity, teaching, tools, and concepts.

Simplicity. What is simple and what makes a tool simple? Participants sug-
gested that simple tools should be intuitive. The users of such a tool should not
need to invest a lot conscious effort for using it. Simple tools should serve as an
extension of human capabilities and act as intellectual bridges. Tools for teach-
ing target users with initially very little or even no knowledge and skills in the
particular subject. Simple tools should therefore not add unnecessary cognitive
overhead, which might hinder learning. Instead, they should enable their users to
achieve goals (understanding concepts, solving problems) that they would have
found more difficult to achieve without these tools.

Some challenges and risks need to be considered when talking about sim-
plicity. First, the evaluation of the degree of simplicity is subjective and highly
dependent on the audience, the learning stage, and the context. There is also a
risk of oversimplifying. Particularly difficult or complex content must be handled
very carefully. Simply deferring or even ignoring it, may lead to misconceptions
which can be difficult to resolve later [9].

The following questions should be taken into account regarding the usage
of simple teaching tools: Who requires simplicity (students, teachers or tool
developers)? Why do we want simplicity, i.e. what are the expected benefits?
Will a simple(r) tool really make it easier to achieve the learning goals?

Pedagogies and Tools 187

Teaching. With respect to teaching the group had quite different preferences
and expectations regarding teaching-related characteristics of (simple) tools. An
ideal teaching tool should be

— tangible and physical (Schmolitzky),

— visual (Hadar),

enable the development of large and meaningful applications (Schedlbauer),
— create cognitive conflict to lead students from understanding to applying
(Wood),

foster discovery-based learning.

Summarizing, a “good” teaching tool should help students to solve problems or
to work with concepts in a way they would not be able to without the tool.

An interesting question emerged regarding learning for understanding (focus-
ing on knowledge) versus learning for applying (focusing on skill); which of them
do we teach? Which of them should a tool support? Participants agreed that a
good tool should support both. However, in reality, many teaching tools seem to
focus only on one of these aspects.

Tools. One general problem with using tools for teaching and learning is distin-
guishing between teaching the tools and teaching with the tools. For example,
a simple UML tool might support the teaching and learning of some object-
oriented concepts (e.g., the different kinds of relationships between classes).
However, while knowing how to work with UML is an important skill, it may not
necessarily help students learning the most basic concepts. It may even interfere
with learning, if taught too early (Schmolitzky).

The group concluded that different tools need to be used for different stages
in the learning process. A tool that is very adequate for the introduction phase
due to its simplicity, could be inappropriate later when more complex concepts
are discussed. On the other hand, a tool that is very beneficial in later stages,
like for example Eclipse with its many special-purpose plug-ins, may very well
interfere with learning in early stages, in case its unnecessary complexity cannot
be suppressed. A teaching tool must therefore always be chosen for a particular
teaching /learning context. The teacher needs to make sure that the user knowl-
edge required and the tool’s complexity and level of abstraction are adequate for
the specific learning environment or situation.

Concepts. One of the main problems of novices is their difficulty to think
and argue at high levels of abstraction [2ISI7IT6ITT]. However, abstraction is
a very important concept in computer science, and even more so in object-
orientation. Understanding concepts, such as “object”, “class”, “abstract class”,
“encapsulation”, etc. requires high abstraction skills [3]. In this discussion the
group struggled with the question of how to teach object-oriented concepts given
their abstract nature. To alleviate problems with high levels of abstraction, we
need to find ways to make abstract concepts more concrete, for example by
examples or metaphors the students can relate to, or by carefully comparing the

concepts to things they already have learned.

188 J. Borstler and I. Hadar

Looking for ways to make concepts concrete, thus keeping them simple,
spawned several discussion threads. The first was the question should we teach
concepts first and languages later or vice versa? Teaching a (concrete) language
first will make general concepts more concrete, at least in the sense of their
applicability. For each new concept, the students will immediately implement
and use it. However, this brought us back to the discussions of understanding
versus applying (see subsection Teaching) and consuming before producing (see
Christian’s presentation). It can be doubted that learning the concrete syntax
of a particular programming language really leads to a true understanding of
the underlying abstract concepts; it probably leads to mere instrumental under-
standing of programming [22]7

Teaching (abstract) concepts first focuses on the “spirit” of concepts and its
relations to other concepts, before restricting the view to limitations and ap-
proaches of a specific language. On the other hand, teaching concepts first,
without a concrete language, has its own difficulties and challenges. Abstract
understanding is built on the basis of vast concrete understanding and experi-
ence (see, e.g., [I0/17]), which novices don’t have. Taking this into consideration,
how can we expect our students to really understand (abstract) concepts when
they don’t know how to (concretely) implement and manipulate them?

Another direction for “keeping it simple” is to reduce the number of concepts
to be taught at the first stages. This requires some kind of linear ordering and
prioritization of the concepts. However, most basic object-oriented concepts are
highly interrelated and students have problems even with the most basic ones,
like for example the differences between objects and classes [20].

4.2 Properties of “Good” Examples

The second working group approached the problem of defining desirable prop-
erties for examples from two angles; (1) by investigating possible meanings of
“good” and (2) by analysing actual examples that work well according to first-
hand experience of working group participants.

For the context of our discussion, we accepted a quite general interpretation
of example. An example need not be an object-oriented program; it can be any
problem, model, technique or metaphor that helps to support the teaching and
learning of object-oriented concepts (or computer science concepts in general).
We furthermore agreed, after some discussion that there are no bad examples, as
long as you make clear what’s bad about them [19]. Jesse pointed out that what
many people call a bad example actually might be a good counter example.

Definitions of “good”. Participants proposed many desirable properties of
examples that, in large, did not cause any controversies (see listing below).

— An example must take care of the particular target group.
e It must build on the student’s existing knowledge [14].

e It must be taken from a familiar application domain. An example requir-

ing some background in Mathematics might for example work well for

Pedagogies and Tools 189

Computer Science majors, but fail when teaching students with a Social
Sciences background.
— An example must take care of the particular teaching and learning
environment,.

e It must challenge the students, but not to a degree leading to cognitive
overload (c.f. cognitive load theory [23]).

e At least its core features must be easy to understand. This includes, in
particular, sufficient and meaningful documentation.

e The level of abstraction must be appropriate (c.f. the abstract versus
concrete discussion in section E.T]).

e It must serve a clear focus that is clear to the students and the teacher(s).

— An example must be faithful to the object-oriented paradigm.

e Objects and classes must exemplify the ideal case, i.e. objects should
actually be instantiated dynamically, actually send messages and have
(non-trivial) states that can change depending on the messages they
receive. If we only show exceptions to the general “rules”, we cannot
expect students to pick up these rules (see [6I15]).

e An example must not violate general object-oriented guidelines, princi-
ples, or rules. Students should not be invited to acquire bad habits, when
they could be avoided (see for example [12I21]).

— An example must fulfil certain general didactical criteria.

e The example, or some story behind it, must stay in the students’ minds
(so they remember more easily).

e It must always work. Since the students use examples as role models
(templates) it is important that they can be reused and extended easily.

e Examples should have some “external effect”. A program with a tangible
or visual effect is easier to grasp and remember than a program where
all effects of computations are kept internal and invisible.

Although most properties or criteria were well understood, it was much more
difficult to describe, in general terms, how examples should be constructed ac-
cording to these properties or criteria. After some time, the group came to the
conclusion that finding further properties does not seem meaningful, as long as
they cannot be accompanied by rules that help enforcing them (as for example
in [T2UT521)).

More controversies raised the discussion regarding the use and misuse of com-
ments. Strategic comments were generally welcomed by all participants, but
excessive and early use of JavaDoc (which seems to become more and more
popular in introductory textbooks), should be discouraged. In some textbook
examples the amount of comments makes it very difficult to “see the forest for
the trees”.

Examples that work. Several working group participants shared their ex-
perience with particular examples. Jesse, for example, described the “women’s
handbag” metaphor, which he has used successfully for many years to explain
the difference between public and private. A women’s most private thing is her

190 J. Borstler and I. Hadar

handbag, but how do you get something out of it then? Suppose you want to
borrow your mother’s car, but she has her key in her handbag. How do you get
it out of the handbag? According to Jesse it usually does not take long until a
student comes up with the solution of taking the handbag to his or her mother
and asking her to take out the key for him or her.

An example of a small application favoured by several working group par-
ticipants was the Ticket-Machine example from a popular textbook [4]. This
example comprises only a single class and is simple enough to be used very early
in an introductory programming course. It is also faithful to the object-oriented
paradigm as described in the previous subsection. Since ticket machines is a fa-
miliar domain, the example does not require any particular student background.

Axel shared a nice example for how information on the Internet can be used to
compare various kinds of data types and algorithms. He uses book texts that are
available on-line to demonstrate the usage of sets, for example for counting the
number of words and the number of unique words in a text, respectively. Doing
this in front of his class, with data from real books (e.g., Moby Dick), gives a
memorable lesson for the differences in efficiency for various set implementations.

Axel and Jesse also suggested the usage of media databases. They are very
familiar applications and can be used to exemplify the semantics of references
and all kinds of aliasing problems. There is however one caveat when using such,
more complex, examples; the larger or more complex an example, the more time
must be spent introducing the the example domain. This will take away time
from the actual learning goals. Choosing a familiar example domain is therefore
very important.

5 Summary and Conclusions

This was the eleventh workshop in a series of workshops on pedagogies and
tools for the teaching and learning of object-oriented concepts. It gathered 17
participants, who shared experiences from a wide range of teaching contexts.

The presentations revealed that, in certain contexts, a good idea can be suffi-
cient to solve a particular teaching/learning problem. On the other hand, huge
efforts can be necessary to solve more basic problems in more general ways.

Our discussions focused mainly on “simple” tools and “good” examples and
the conclusions can be summarized as follows.

— Keep it simple. Tools and examples should be as simple as possible, but still
powerful or complex enough to facilitate doing or understanding things that
would otherwise have been too difficult for the students.

— Make it sufficiently complex. Examples should be as simple as possible, but
not simplistic. Many advantages of the object-orientation paradigm require a
certain amount of complexity to become apparent. Example programs need
therefore be sufficiently complex to reveal these advantages.

— Make sure it suits your students. There are no “one size fits all” tools and
examples; they must be carefully chosen with respect to student background
and prerequisite knowledge.

Pedagogies and Tools 191

— Make abstract concepts concrete, but don’t stay at the concrete level. Abstract
concepts are easier to understand when they are made concrete. However,
when staying at a concrete level throughout, students will only get an in-
strumental understanding of the subject.

— Don’t reinvent the wheel. There are numerous tools and examples “out there”
that have been successfully applied in a wide range of settings. However,
when reusing a tool or example make sure to evaluate the context of its use
(see ‘make sure it fits your students’).

Table 2. List of workshop participants

Name Affiliation E-mail Address
Jiirgen Borstler Umed University, Sweden jubo@cs.umu.se
Albrecht Ehlert Oberstufenzentrum Informations- ehlertQoszimt.de
technik Berlin, Germany
Irit Hadar University of Haifa, Israel hadari@mis.haifa.ac.il
Jesse Heines University of Masachusetts Lowell, heines@cs.uml.edu
USA
Petra Kosters FernUniversitdt Hagen, Germany petra.koesters@fernuni-hagen.de
Boriss Mejass Université Catholique de Louvain, boriss.mejas@uclouvain.be
Belgium
Peter Osburg Hasso-Platter-Institute, Germany peter.osburg@hpi.uni-potsdam.de
Michael Perscheid Hasso-Platter-Institute, Germany michael.perscheid@hpi.uni-potsdam.de
Daniela Rose TU Berlin, Germany dani.rose@web.de
Wilfried Rupflin University of Dortmund, Germany wr@irb.cs.uni-dortmund.de
Martin Schedlbauer University of Masachusetts Lowell, mschedlb@cs.uml.edu
USA
Axel Schmolitzky University of Hamburg, Germany schmolitzky®@acm.org
Carsten Schulte Freie Universitdt Berlin, Germany schulte@inf.fu-berlin.de
Till Schiimmer FernUniversitit Hagen, Germany till.schuemmer@fernuni-hagen.de
Christian Spah University of Hamburg, Germany christian.spaeh@blue-flat.de
Mariann ORF, Austria unterluggauer@orf.at
Unterluggauer
Murray Wood University of Strathclyde, Scotland murray.wood@cis.strath.ac.uk
References

1. ACM Java Task Force: Java Task Force materials, Version 1.0 (2006) (accessed
2006-10-05), http://jtf.acm.org/index.html

2. Aharoni, D., Leron, U.: Abstraction is Hard in Computer-Science too. In: Pro-
ceedings of the 21st Conference of the International Group for the Psychology of
Mathematics Education, vol. 3, pp. 2-9-2-16 (1997)

3. Armstrong, D.J.: The Quarks of Object-Oriented Development. Communications
of the ACM 49(2), 123-128 (2006)

4. Barnes, D.J., Kélling, M.: Objects First with Java UA Practical Introduction using
BlueJ. Prentice-Hall, Englewood Cliffs (2006)

5. Berge, O., Borge, R.E., Fjuk, A., Kaasbgll, J., Samuelsen, T.: Learning Object-
Oriented Programming. In: Proceeding Norsk Informatikkonferanse (NIK), pp. 37—
47 (2003)

6. Borstler, J.: Improving CRC-Card Role Play with Role-Play Diagrams. In: Com-
panion to the 20th Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pp. 356-364 (2005)

http://jtf.acm.org/index.html

192

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

J. Borstler and I. Hadar

Bucci, P., Long, T.J., Weide, B.W.: Do We Really Teach Abstraction. In: Proceed-
ings of the 32nd SIGCSE Technical Symposium on Computer Science Education,
pp. 26-30 (2001)

Bruce, K.: Controversy on How to Teach CS 1: A Discussion on the SIGCSE-
members Mailing List. SIGCSE Bulletin — Inroads 36(4), 29-35 (2004)

. Clancy, M.: Misconceptions and attitudes that infere with learning to program. In:

Fincher, S., Petre, M. (eds.) Computer Science Education Research, pp. 85-100.
Taylor & Francis, Abington (2004)

Dubinsky, E.: Reflective Abstraction in Advanced Mathematical Thinking. In: Tall,
D. (ed.) Advanced Mathematical Thinking, pp. 95-123. Kluwer, Netherlands (2001)
Fleury, A.E.: Encapsulation and Reuse as Viewed by Java Students. In: Proceedings
of the 32nd SIGCSE Technical Symposium on Computer Science Education, pp.
189-194 (2001)

Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading (1999)

Guzdial, M.: Centralized Mindset: A Student Problem with Object-Oriented Pro-
gramming. In: Proceedings of the 26th SIGCSE Technical Symposium on Computer
Science Education, pp. 182-185 (1995)

Hadjerrouit, S.: A Constructivist Approach to Object-Oriented Design and Pro-
gramming. In: Proceedings of the 4th Conference on Innovation and Technology in
Computer Science Education, pp. 171-174 (1999)

Holland, S., Griffiths, R., Woodman, M.: Avoiding Object Misconceptions. In: Pro-
ceedings of the 28th SIGCSE Technical Symposium on Computer Science Educa-
tion, pp. 131-134 (1997)

Holmboe, C.: A cognitive framework for knowledge in informatics: The case of
Object-Orientation. In: Proceedings of the 4th Conference on Innovation and Tech-
nology in Computer Science Education, pp. 17-20 (1999)

Leron, U.: Abstraction Barriers in Mathematics and Computer Science. In: Pro-
ceedings of the 3rd International Conference for Logo and Mathematics Education
(1987)

Ma, L., Ferguson, J., Roper, M., Wood, M.: Investigating the Viability of Men-
tal Models Held by Novice Programmers. In: Proceedings of the 38th SIGCSE
Technical Symposium on Computer Science Education, pp. 499-503 (2007)
Malan, K., Halland, K.: Examples that Can do Harm in Learning Programming.
In: Companion to the 19th Conference on Object-Oriented Programming Systems,
Languages, and Applications, pp. 83-87 (2004)

Ragonis, N., Ben Ari, M.: A long-term investigation of the comprehension of OOP
concepts by novices. Computer Science Education 15(3), 203-221 (2005)

Riel, A.: Object-Oriented Design Heuristics. Addison-Wesley, Reading (1996)
Skemp, R.R.: Relational Understanding and Instrumental Understanding. Mathe-
matics Teaching 77, 20-26 (1976)

Sweller, J., van Merriénboer, J., Paas, F.: Cognitive Architecture and Instructional
Design. Educational Psychology Review 10(3), 251-296 (1998)

Refactoring Tools
Report on the 1st Workshop WRT at ECOOP 2007

Danny Dig!, Ralph Johnson!, Frank Tip?, Oege De Moor?, Jan Becicka?,
William G. Griswold®, and Markus Keller®

! Department of Computer Science,
University of Illinois at Urbana-Champaign
{dig, johnson}@cs.uiuc.edu
https://netfiles.uiuc.edu/dig/wuw
2 IBM T.J. Watson Research Center
ftipQ@us.ibm.com
3 Oxford University Computing Laboratory
oege@comlab.ox.ac.uk
4 Sun Microsystems
Jan.Becicka@sun.com
® Department of Computer Science and Engineering
University of California - San Diego
wgglcs.ucsd.edu
5 Rational Zurich Research Lab
markus.keller@ch.ibm.com

Abstract. WRT’07 was the first instance of the Workshop on Refactor-
ing Tools. It was held in Berlin, Germany, on July 31st, in conjunction
with ECOOP’07. The workshop brought together over 50 participants
from both academia and industry. Participants include the lead devel-
opers of two widely used refactoring engines (Eclipse and NetBeans),
researchers that work on refactoring tools and techniques, and others
generally interested in refactoring. WRT’07 accepted 32 submissions,
however, it was impossible to present all these submissions in one sin-
gle day. Instead, in the morning session we started with a few technical
presentations, followed by large group discussions around noon, a poster
session and small group discussions in the afternoon. WRT’07 ended with
a retrospective session and unanimous consensus to organize another ses-
sion in the future.

1 Objectives and Call for Participation

Refactoring is the process of applying behavior-preserving transformations to
a program with the objective of improving the programs design [5]. A specific
refactoring is identified by a name (e.g., Extract Method), a set of preconditions,
and a set of specific transformations that need to be performed. Tool support
for refactoring is highly desirable because checking the preconditions for a given
refactoring often requires nontrivial program analysis, and applying the transfor-
mations may affect many locations in the program. In recent years, the emergence

M. Cebulla (Ed.): ECOOP 2007 Workshop Reader, LNCS 4906, pp. 193 2008.
© Springer-Verlag Berlin Heidelberg 2008

194 D. Dig et al.

of light-weight programming methodologies such as Extreme Programming has
generated a great amount of interest in refactoring, and refactoring support has
become a required feature in modern-day IDEs. Until now, there has not been
a suitable forum for discussions among researchers and developers of such tools.
Therefore, we propose to organize a full-day workshop at ECOOPO7 on refac-
toring tools with a strongly practical focus. We plan to invite developers and
researchers in the field of refactoring to submit presentations and demonstration
proposals about practical refactoring tools.

1.1 Call for Papers

There is a great deal of interest in the development of tool support for refactoring.
However, researchers and tool vendors rarely work together. This forum will
enable the transfer of ideas and expertise in both ways: researchers can show the
state-of-the-art analyses they are using in developing tool support for refactoring
while tool vendors can offer valuable insights on the challenges of scaling such
analyses for realistic applications. By bringing together the researchers and tool
vendors, we can shorten the time to embody ideas into production systems.
In addition, by making researchers aware of what others are working on, the
potential for reinventing the wheel is greatly reduced while the potential for
creative collaboration is greatly enhanced. This workshop is the next step in
our effort to create such a community, the first step being the creation of a
refactoring research web portal (http://refactoring.info).

Potential topics are those related to refactoring tools including, but not
restricted to:

— refactoring engines

— improving the usability of existing refactoring engines

— program analyses for refactoring tools

— tools for detecting applied refactorings

— tools for suggesting refactorings (e.g., detecting code-smells)

— testing and verification of refactoring tools

— language-independent refactoring tools

— refactoring tools for non-OO languages (e.g., functional languages, aspect-
oriented, etc.)

2 Organizers, Participants, and Accepted Papers

2.1 Organizers

— Danny Dig (chair and primary organizer), University of Illinois at Urbana-
Champaign, digQ@cs.uiuc.edu

— Ralph Johnson, University of Illinois at Urbana-Champaign,
johnson@cs.uiuc.edu

— Frank Tip, IBM T.J. Watson Research Center, ftip@Qus.ibm.com

— Oege de Moor, Oxford University Computing Laboratory,
oege@comlab.ox.ac.uk

Refactoring Tools 195

— Jan Becicka, NetBeans Refactoring Engine, Sun Microsystems,
Jan.Becicka@sun.com

— William G. Griswold, University of California at San Diego, wgg@cs.ucsd.edu

— Markus Keller, Eclipse Refactoring Engine, IBM, markus.keller@ch.ibm.com

2.2 Participants

— Malte Appeltauer
— Thomas Baar

— Jan Becicka

— Andrew P. Black
— Serge Demeyer

— Danny Dig

— Bassem Elkarablieh
— Yishai Feldman

— Tammo Freese

— Robert Fuhrer

— Christian Hammer
— Zoltn Horvth

— Petr Hrebejk

— Maha Idrissi Aouad
— Ralph Johnson

— Nicolas Juillerat

— Douglas Kirk

— Ondrej Lhotak

— Chuan-kai Lin

— Carlos Lpez

— Laszlo Lovei

— Slavisa Markovic
— Ral Marticorena
— Philip Mayer

— Andreas Meissner
— Tom Mens

— Kim Mens

— Dirk Mller

— Helmut Neukirchen
— Carlos Noguera

— Javier Perez

— Jiirgen Reuter

— Romain Robbes

— Wilfried Rupflin
— Gregor Snelting

— Sergio Soares

— Gabriele Taentzer
— Frank Tip

— Luigi Troiano

196 D. Dig et al.

— Shmuel Tyszberowicz
— Guido Wachsmuth

— Dietmar Winkler

— Petr Zalac

— Benjamin Zeiss

2.3 Accepted Papers

WRT’07 asked for short position papers (2-pages). The interested reader can find
the 32 accepted papers published as a technical report [3] or on the workshop’s

webpage [9].

3 Organization

Due to the large number of accepted submissions (32), the Program Committee
decided not to have a traditional technical paper presentation, but rather to
engage the participants in several discussions. The PC selected a few papers for
presentation in the plenary session. These are papers that are representative and
have the potential to steer discussions among participants. The interested reader
can find the slides of these talks on the workshop’s webpage [9].

To engage the participants, we designed two sessions for large group discus-
sions. These sessions took place immediately before, respectively after, the lunch
break.

In the afternoon session, we designed a poster session, followed by small group
discussions based on common topics of interest. We concluded the event with a
retrospective of the day.

3.1 Short Presentations

The presenters in this category had 15 minutes for presentation followed by 5
minutes of Q&A. The developers of Eclipse and NetBeans refactoring engines
were allowed 25 minutes for presentation and 10 minutes for discussion with
the audience. Next we give a short summary of each presentation, the * symbol
denotes the presenter.

Presentations by developers of Eclipse and NetBeans refactoring
engines

Advanced Refactoring in Eclipse: Past, Present, and Future. Adam Kiezun,
Robert M. Fuhrer®, Markus Keller. The Eclipse developers led us through the
history of the development and maturity of the refactoring APIs in Eclipse. The
first refactorings in Eclipse were implemented as text manipulation transforma-
tions. The refactoring infrastructure evolved into the AST rewriter framework,
while the program analyses used for checking preconditions became more so-
phisticated (e.g., using type-constraints analysis [6]). The next step was the

Refactoring Tools 197

inclusion of refactoring infrastructure in the Language Toolkit (LTK) which al-
lows others to write their own refactorings. The infrastructure was further refac-
tored to allow others to extend the existing refactorings in the engine using the
processor-participants architecture. The more recent development efforts were
focused toward supporting the new language features in Java 1.5, supporting
collaboration among large teams (e.g., through recording-and-replaying refac-
torings across different workspaces). The developers of the Eclipse refactoring
engine outlined some directions for future development: composable refactorings
opening the road for user-defined refactorings, new classes of refactorings, and
supporting the increasing mixture of languages.

Using Java 6 Compiler as a Refactoring and an Analysis Engine. Jan Becicka*,
Petr Hrebejk*, Petr Zajac. The NetBeans developers presented the refactoring
APIs in NetBeans refactoring engine. Since the NetBeans IDE and the Java
language is developed by the same company (Sun Microsystems, Inc), the refac-
toring APIs in NetBeans use exactly the same program elements that the ‘javac’
compiler uses. The NetBeans APIs complement the javac APIs with utility meth-
ods for searching and manipulating the AST program elements. The NetBeans
developers concluded with presenting the Codeviation project. The Codeviation
project has many goals: to assist the developers by suggesting what should be
refactored, to asses whether a refactoring initiative was successful, to inspect ar-
bitrary builds by combining a suite of metrics and analysis tools, and to integrate
refactorings with Version Control Systems and Bug-tracking systems.

Research Presentations

Code Analyses for Refactoring by Source Code Patterns and Logical Queries.
Daniel Speicher, Malte Appeltauer®, Gnter Kniesel. The authors are addressing
a well known problem in the refactoring community: the program analysis for
refactoring needs to be based on solid formalism, therefore, it can be complex.
Currently, there is a big gap between the formalism and its implementation.
The authors advocate that logic-based program analysis bridges this gap be-
tween specification and implementation of refactoring preconditions. However,
the developers that want to implement new refactorings need to learn a new
meta-level program representation which does not resemble the familiar pro-
gram abstractions. The authors propose a new language, GenTL, which is a
generic language for transformations; it has a concrete syntax resembling the
program abstractions that a Java developer is already familiar with. The au-
thors concluded by showing how they used GenTL to express the analysis for
a complex refactoring, namely the one that replaces concrete types of method
arguments with the most general supertypes [7].

Refactoring Functional Programs at the University of Kent. Huiqing Li, Simon
Thompson*, Chris Brown, Claus Reinke. Refactoring became popular as a topic
of research and as a practice within the OO community (first in Smalltalk,
then in Java). Thompson’s presentation was interesting because it presented the

198 D. Dig et al.

design and implementation of two refactoring engines for functional languages,
Haskell and Erlang. The presenter focused on some of the unique challenges
that stem from the differences between functional languages and OO languages:
values not variables, expressions not assignments, functions as data, rich data
and types, controlled side-effects, the semantics of a program are sensitive to
the layout of the program (in Haskell), declarative descriptions of refactorings.
The presenter quickly described HaRE, a refactoring engine for Haskell, and
Wrangler; a refactoring engine for Erlang. Both these engines are integrated
with emacs and gvim. The presenter concluded by talking about various design
decisions regarding the integration of their refactoring engines with the IDEs
and with other tools (e.g., makefiles, test generation tools).

Visual interface for type-related refactorings. Philip Mayer*, Andreas Meibner,
Friedrich Steimann. The authors classify the type-related refactorings into
‘lightweight’ refactorings (e.g., the ‘extract interface’ refactoring) that do not
require much input from the user, and ‘heavyweight’ refactorings (e.g., the ‘use
supertype where possible’ refactoring) where the analysis is very involved, re-
quires some help from the user, and can produce unpredictable results. De-
velopers have a tendency to avoid the heavyweight refactorings because these
refactorings are hard to control/parameterize, and the developers do not feel ‘in
control’. The authors propose to separate the analysis part from the transfor-
mation part and to bring the user back in control. Their tool allows the user to
visualize the resulting type hierarchy obtained as the outcomes of different type-
related refactorings. In addition, the tool might suggest some other type-related
refactorings.

3.2 Large Group Discussions

To ‘break the ice’ for some large group brainstorming, we used two short pre-
sentations.

LAN Simulation: A refactoring teaching example. Serge Demeyer*. The au-
thor presented a Software Engineering lab session designed to teach refactoring
principles. The author uses a pre-cooked LAN simulation implementation [I] to
introduce the notion of ‘bad smells’ and the ever changing requirements for new
features.

This presentation was followed by a large group brainstorming on How to
teach refactoring effectively. Several participants agreed that students are
not likely to learn refactoring unless they were ‘forced’ in a situation where the
code grew as a clumsy codebase. Students are more likely to learn when they
‘feel the pain’ of poorly written code. Ralph Johnson suggested that students
should start their Software Engineering education not with a brand new project,
but rather by continuing a project that somebody else developed. This forces
the student to refactor the code in order to understand it.

Several other topics were raised: when is the right time to teach refactor-
ing principles (in the introductory programming courses vs. advanced software
engineering courses), how to teach refactoring in industry, etc.

Refactoring Tools 199

Why Don’t People Use Refactoring Tools. Andrew Black*, Emerson Murphy-Hill.
The author’s main thesis is that there are two kinds of refactoring processes: the
‘floss refactoring’ and the ‘root canal refactoring’. The floss refactorings refer
to a state where programmers refactor constantly to maintain healthy software;
refactoring is interleaved with other programming tasks. The root canal refac-
toring refers to the state where programmers refactor in clumps to fix unhealthy
software; programming and refactoring are two distinct activities. The authors
suggest that the reason why not everybody uses refactoring tools is because the
current research on refactoring is favoring the root canal refactorings, rather
than the floss refactorings. By observing hundreds of software developers, the
authors conclude that most refactorings were performed in the floss process.

This presentation was followed by a large group discussion on Why aren’t
refactoring engines used more often. Several answers were given to this
question: obscure textual error messages in case that a refactoring precondition
fails, hard to select code as input to the tools, poorly designed user interfaces,
users not trusting the correctness of the refactoring engine. For the providers of
the refactoring engines it still remains an open question on how much analysis
should a refactoring engine perform: too much analysis is slow and disrupts the
user, too little analysis is fast but can produce unsafe results.

3.3 Small Group Discussions

After the poster presentation session, the large audience was split into small
groups based on common interests. Each small group delegated a presenter that
summarized the findings of the group: what are the main problems/challenges
within their topic area, what is the state of the art solutions, and what needs to
be done next.

Refactoring and API Evolution
Problems identified:

Culture of no-change (especially when the organization has ‘critical mass’
customers)

Granularity of API changes (small, frequent changes vs. large, infrequent
changes)

Too high cost associated with maintaining multiple versions of the API
Lack of documentation of deprecated APIs

— No access to application code that uses the APIs

State-of-the-practice and state-of-the-art:

Deprecated APIs

— Wrappers

Several levels for marking stability /instability of APTs
— Migration user guide manuals

— Record and replay of refactorings

— Automated detection of refactorings (e.g., see [2g]

200 D. Dig et al.

— Merging component and application refactorings (e.g., see [])
— Automated generation of compatibility adapters

What needs to be done next:

— Behavioral (not only structural) API changes
— Automated classification of API changes
— Automatic patching of bytecodes

Program Representation for Refactorings
Problems identified:

— Scalability

— Comments, annotations, layout, support for literate programming
— Hybrid of languages and embeddings

— Macro-processors

Suggesting Refactorings
Challenges identified:

— Agree on areas of bad design

— Need for common repository of test systems

— Need better integration with analysis tools

— In what form to present the suggestions to the user

Model-driven software refactoring
Challenges identified:

— What does ‘behavior preservation’” mean in the context of refactoring the
models?

— How to define the model quality

— Generic refactorings for domain-specific modeling languages

Refactoring for non OO languages
Refactoring is similar for any language, but each language seems to require its
own tools.
Challenges:

— Building tools for each language
— Reusable infrastructure for building tools
— Refactoring systems built from several languages

3.4 Retrospective

At the end of the day, the audience unanimously agreed to organize another
session in the future. Therefore, we concluded the workshop with a retrospective
of the whole event. We wanted to learn what are the things that worked well and
we should keep doing in the future, what are the things that did not work well
and we should do differently in the future, what are the things that still puzzle
us (things for which we do not have a good answer).

Refactoring Tools 201

Things that worked well

— Many participants (both industry and academia)

Posters

Small group discussions on special themes

— Short 1-slide introductions

Everybody liked the presentations from Eclipse and NetBeans
The program was kept on schedule

Things to do differently next time

— More time for presentation slots

— Multiple, non-overlapping small groups

— Allocate time for demos of the tools

— Submission format should be a standard one (ACM templates)
— Need more time for the industry refactoring engines

— Ask industry refactoring developers to give tutorials

— 1-slide intros need headshots

Things that still puzzle us

— Should this be a one- or two-day event?
— Should we organize this as a separate refactoring conference?
— Is the poster session really useful?

4 Concluding Remarks

Refactoring is still a young field. Most work on refactoring has been done for one
language (Java). Some programmers are enthusiastic users of refactoring tools,
others ignore them. Even enthusiastic users see many ways to improve the tools.
Refactoring tools are needed for every language. They need to be easier to use,
more powerful, and easier to develop. Refactoring tools will improve for many
years, so this is probably only the first in a long line of workshops.

The webpage [9] contains the slides, the proceedings, and the schedule of
the workshop. This webpage might change in the future, but it will be always
accessible from http://refactoring.info

References

1. Demeyer, S., Van Rysselberghe, F., Girba, T., Ratzinger, J., Marinescu, R., Mens,
T., Du Bois, B., Janssens, D., Ducasse, S., Lanza, M., Rieger, M., Gall, H., El-
Ramly, M.: The LAN-simulation: A Refactoring Teaching Example. In: Proceedings
of International Workshop on Principles of Software Evolution, pp. 123-134. IEEE
Computer Society Press, Los Alamitos (2005)

2. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automatic detection of refactor-
ings in evolving components. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 404-428. Springer, Heidelberg (2006)

202 D. Dig et al.

3. Dig, D., Cebulla, M. (eds.): 1st workshop on refactoring tools (wrt 2007). Technical
Report ISSN 1436-9915, Technical University of Berlin (July 2007)

4. Dig, D., Manzoor, K., Johnson, R., Nguyen, T.N.: Refactoring-aware Configuration
Management for Object-Oriented Programs. In: Proceedings of International Con-
ference on Software Engineering, pp. 427-436. IEEE Computer Society Press, Los
Alamitos (2007)

5. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Adison-Wesley, London (1999)

6. Tip, F.: Refactoring using type constraints. In: Riis Nielson, H., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 1-17. Springer, Heidelberg (2007)

7. Tip, F., Kiezun, A., Bauemer, D.: Refactoring for generalization using type con-
straints. In: OOPSLA 2003. Proceedings of Object-oriented programing, systems,
languages, and applications, pp. 13-26. ACM Press, New York (2003)

8. Weissgerber, P., Diehl, S.: Identifying refactorings from source-code changes. In:
ASE 2006. Proceedings of the 21st IEEE/ACM International Conference on Au-
tomated Software Engineering, pp. 231-240. IEEE Computer Society Press, Los
Alamitos (2006)

9. WRT 2007 homepage, http://netfiles.uiuc.edu/dig/RefactoringWorkshop

http://netfiles.uiuc.edu/dig/RefactoringWorkshop

Author Index

Becicka, Jan 193 Jackson, Andrew 65
Bencomo, Nelly 132 Johnson, Ralph 193
Bergel, Alexandre 7 Jones, Richard 50
Bergmans, Lodewijk 75 Jul, Eric 50

Blair, Gordon 132

Boella, Guido 108 Keller, Anne 142
Borstler, Jirgen 182 Keller, Markus 193
Boyland, John 99 Kniesel, Giinter 91
Brito e Abreu, Fernando 166 Krintz, Chandra 50
Broman, David = 27 Kuhlemann, Martin 142

Kuhn, Adrian 142
Calero, Coral 166

Canal, Carlos 154 Lange, Christian F.J. 142, 166
Cazzola, Walter 91 Lanza, Michele 166
Cellier, Frangois 27 Leavens, Gary 99
Cherrier, Pascal 171 Lemmens, Arthur 1
Chiba, Shigeru 91 Logozzo, Francesco 99
Chitchyan, Ruzanna 75 Lopes, Cristina Videira 171
Clarke, Dave 40, 99
Coady, Yvonne 91 Mehner, Katharina 75
Costanza, Pascal 1 Mens, Kim 142

Miigge, Holger 171
D’Hondt, Theo 1 Mulet, Philippe 50
Davis, Kei 13 Murillo, Juan Manuel 154
De Meuter, Wolfgang 7
De Moor, Oege 193 Nierstrasz, Oscar 7
Dedecker, Jessie 171 Noble, James 40
Demeyer, Serge 142 Nytsch-Geusen, Christoph 27
Dig, Danny 193
Drossopoulou, Sophia 40 Oriol, Manuel 91
Ducasse, Stéphane 7, 91
Ducournau, Roland 50 Poetzsch-Heffter, Arnd 99

Poizat, Pascal 154
Fabry, Johan 75
Falcone, Giovanni 166 Reussner, Ralf 123
France, Robert 132 Rhodes, Christophe 1

Fritzson, Peter 27
Saake, Gunter 91

Gagnon, Etienne 50 Sahraoui, Houari A. 166

Griswold, William G. 193 Sanen, Frans 75

Groher, Iris 65 Schwanninger, Christa 65

Guéhéneuc, Yann-Gaél 142, 166 Steimann, Friedrich ~ 108
Striegnitz, Jorg 13

Hadar, Irit 182 Sudholt, Mario 75

Hiibner, Hans 1 Szyperski, Clemens 123

204 Author Index

Tanter, Eric 171 Weck, Wolfgang 123

Tip, Frank 193 Wrigstad, Tobias 40
Wuyts, Roel 7

Vitek, Jan 50

Volter, Markus 65 Zendra, Olivier 50

	Title Page
	Preface
	Organization
	Table of Contents
	Lisp Report on the 4th European Lisp Workshop at ECOOP 2007
	Introduction
	Organisation
	Organisers
	Call for Participation
	Format

	Presentations
	Discussion
	Related Events

	Dynamic Languages and Applications Report on the Workshop Dyla’07 at ECOOP 2007
	Workshop Description and Objective
	Content
	Conclusion

	Multiparadigm Programming in Object-Oriented Languages: Current Research Report on the Workshop MPOOL’07 at ECOOP 2007
	Introduction
	Presentations
	An Overview of the Ciao Multiparadigm Language and Program Development Environment and Its Design Philosophy (Manuel Hermenegildo and the Ciao Development Team)
	A Multiparadigmatic Study of the Object-Oriented Design Patterns (Philippe Narbel)
	Implementing Self-adaptability in Context-Aware Systems (Boris Mejias and Jorge Vallejos)
	Type Erasure in C++: The Glue between Object-Oriented and Generic Programming (Thomas Becker)
	Runtime Polymorphic Generic Programming-Mixing Objects and Concepts in ConceptC++ (Mat Marcus, Jaakko Järvi and Sean Parent)
	Multi-language Library Development---From Haskell Type Classes to C++ Concepts (Marcin Zalewski, Andreas Priesnitz, Cezar Ionescu, Nicola Botta and Sibylle Schupp)
	Towards Equal Rights for Higher-Kinded Types (Adriaan Moors, Frank Piessens and Martin Odersky)
	Integrating Java and Prolog Using Java 5.0 Generics and Annotations (Maurizio Cimadamore and Mirko Viroli)
	Amalgamating the Session Types and the Object Oriented Programming Paradigms (Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini and Mario Coppo)
	A Static Framework for Scalable Emulation of Evaluation Semantics (Andreas P. Priesnitz)
	Improving Large Vector Operations with C++ Expression Template and ATLAS (L. Plagne and F. Hülsemann)
	Lazy Data Types in C++ Template Metaprograms (Adam Sipos, Norbert Pataki, and Zoltán Porkoláb)

	Authors Index
	The Organizers

	Equation-Based Object-Oriented Languages and Tools Report on the Workshop EOOLT 2007 at ECOOP 2007
	Objectives and Call for Papers
	Organizers
	Participants
	Contributions
	Integrated System Modeling Approaches
	Hybrid Modeling and Variable Structure Systems
	Modeling Languages, Specification, and Language Comparison
	Tools and Methods

	Discussion of Future Directions of Equation-Based Languages
	New Directions
	Tool Integration and Tool Interfaces
	Variable Structure Systems
	Metamodeling, Reflection, Model Unification
	Integrated Modeling Approaches

	Conclusions
	References

	Aliasing, Confinement, and Ownership in Object-Oriented Programming Report on the Workshop IWACO’07 at ECOOP 2007
	Introduction
	History

	Invited Talk
	The Presentations
	Comparative Summary of Contributions and Debates
	(Ownership) Inference
	Ownership in the Real World
	Project Overviews
	Theoretical Developments
	(Re)emerging Techniques

	Discussion
	Future
	Participants
	Organisers
	Program Committee

	Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems Report on the Workshop ICOOOLPS 2007 at ECOOP 2007
	Objectives and Call for Papers
	Organizers
	Participants
	Contributions
	Annotations vs. No Annotation
	Lookup, Dispatch Mechanisms
	Miscellaneous Implementation Issues
	Continuations and Synchronizations

	Conclusion
	Perspectives: ICOOOLPS Future
	Background

	Models and Aspects - Handling Crosscutting Concerns in MDSD Report on the Workshop MA’07 at ECOOP 2007
	Introduction
	Synopsis of Accepted Papers
	Using Aspect Oriented Modeling to Localize Implementation of Executable Models Altahat
	Interests and Drawbacks of AOSD Compared to MDE a Position Paper Kabore
	Identification of Crosscutting Concerns in Constraint-Driven Validated Model Transformations Lengyel
	Towards a Generic Aspect-Oriented Modeling Framework Morin
	Towards a Run-Time Model Based on Colored Petri-nets for the Execution of Model Transformations Reiter
	Improving Traceability through AOSD Rummler
	Reducing Aspect-Base Coupling through Model Refinement Berg

	Workshop Questions Tackled
	Participants
	Discussion
	Discussion 1: Models to Reduce Problems with Aspects
	Discussion 2: Aspects in Transformations

	Conclusions

	Aspects, Dependencies and Interactions Report on the Workshop ADI at ECOOP 2007
	Introduction
	Accepted Papers
	Requirements, Analysis and Design
	Language-Level Problems
	Contract-Based Approaches

	Keynote Speech by Gary T. Leavens on ``Concerning Efficient Reasoning in AspectJ-Like Languages''
	Discussion Topics
	Discussion Group 1: Aspects, Dependencies and Interactions Due to and/or Prohibited by Languages
	Discussion Group 2: Aspects, Dependencies and Interactions in Applications
	Discussion Group 3: State and Future of Formal Methods for Aspects
	Discussion Group 4: A Classification of Aspect Dependencies and Interactions

	Panel on ``Does AO Equal Quantification and Obliviousness?''
	Panel Positions
	Panel Discussion

	Conclusion
	Workshop Organizers and Participants
	List of Organizers
	List of Attendees

	Enabling Software Evolution Via AOP and Reflection Report on the Workshop RAM-SE at ECOOP 2007
	Workshop Description and Objectives
	Workshop Topics and Structure
	Important References
	Workshop Overview: Session by Session
	Tendencies in Reflection, AOP and Meta-data for Software Evolution
	Final Remarks
	Workshop Attendee

	Formal Techniques for Java-Like Programs Report on the Workshop FTfJP at ECOOP 2007
	Call for Papers
	People
	Programme Committee
	Organizers
	Participants

	Summary of Contributions
	Session 1: Types
	Session 2: Languages and Verification
	Session 3: Analysis
	Session 4: Panel Discussion

	Conclusions

	Roles and Relationships in Object-Oriented Programming, Multiagent Systems and Ontologies Report on the ${2^nd}$ Workshop on Roles and Relationships at ECOOP 2007
	Introduction
	Organizers
	Contributions of the Workshop
	Roles and Programming Languages
	Roles and Relationships
	Roles and Ontologies

	Invited Talks
	The OOram Software Engineering Method
	Where Are the Relationships?

	Discussion
	The Metarole Challenge
	Group Discussion

	Conclusions

	Component-Oriented Programming Report on the 12th Workshop WCOP at ECOOP 2007
	Introduction
	Presentations
	Model-Driven Development and Adaptation of Components
	Component Performance Prediction
	Aspects and Components
	Component Nature

	Break-Out Sessions
	How Black Should a Component Be?
	How Much Information/Metadata Can Be Expected from a Developer?
	Formalisms in Component-Oriented Software Engineering

	Final Words
	Accepted Papers

	Model-Driven Software Adaptation Report on the Workshop M-ADAPT at ECOOP 2007
	Introduction
	Workshop Structure
	Paper Presentations
	Discussion Sessions
	Preamble
	Summary of Ensuing Discussion

	Final Remarks
	List of Attendees

	Object-Oriented Reengineering Report on the WorkshopWOOR’07 at ECOOP 2007 ${10^th}$ Anniversary Edition
	Introduction
	Position Papers
	Working Groups
	Working Group 1: Model Reengineering
	Working Group 2: Tool Building Issues
	Working Group 3: Language Independence for Reverse Engineering Tools

	Conclusion: What Next ?

	Practical Approaches for Software Adaptation Report on the 4th Workshop WCAT at ECOOP 2007
	Introduction
	Contributions and Workshop Participants
	Comparative Summary of the Presentations
	Adaptation Techniques for Specific Software Engineering Approaches
	Adaptation Techniques for Specific Structural Elements
	Adaptation Techniques and Tools for Specific Platforms

	Conclusions of the Workshop

	Quantitative Approaches in Object-Oriented Software Engineering Report on the ${11^th}$ Workshop QAOOSE at ECOOP 2007
	Introduction
	Keynote: Horst Zuse
	Keynote: Giovanni Falcone
	Position Papers
	Paper: Inconsistencies of Metrics in C++ Standard Template Library
	Paper: Automatic Generation of Strategies for Visual Anomaly Detection
	Paper: Perception and Reality: What Are Design Patterns Good for?

	Discussions

	Object Technology for Ambient Intelligence and Pervasive Computing Report on the OT4AmI-Workshop at ECOOP 2007
	Introduction
	Scope of the Workshop
	Goals
	Topics
	Workshop Organization

	Summary of Position Paper Discussions
	Introducing Context-Awareness in Applications by Transforming High-Level Rules parraAl:ot4ami2007
	Reasoning about Past Events in Context-Aware Middleware philipsAl:ot4ami2007
	Context-Aware Leasing for Mobile Ad Hoc Networks gonzalezAl:ot4ami2007
	AmI: The Future Is Now fabryNoguera:ot4ami2007
	Ambient-Oriented Programming in Fractal plsekAl:ot4ami2007
	Dealing with Ambient Intelligence Requirements schmidtAl:ot4ami2007
	Proximity Is in the Eye of the Beholder barronAl:ot4ami2007

	Discussion on Emerging Topics
	Context Volatility
	Responsibilities for AmI Concerns in Development Chain
	On User Involvement in Adaptable Applications

	Conclusion

	Pedagogies and Tools for the Teaching and Learning of Object Oriented Concepts Report on the 11th Workshop TLOOC at ECOOP 2007
	Introduction
	Workshop Organization
	Summary of Presentations
	Short Papers
	Full Papers

	Working Group Discussions
	Simple Tools for the Teaching of Basic Object Oriented Concepts
	Properties of ``Good'' Examples

	Summary and Conclusions

	Refactoring Tools Report on the 1st Workshop WRT at ECOOP 2007
	Objectives and Call for Participation
	Call for Papers

	Organizers, Participants, and Accepted Papers
	Organizers
	Participants
	Accepted Papers

	Organization
	Short Presentations
	Large Group Discussions
	Small Group Discussions
	Retrospective

	Concluding Remarks

	Author Index

